Browse

You are looking at 21 - 30 of 98 items for

  • Refine by Access: all x
  • By Author: Smyth, Matthew D. x
Clear All
Open access

Endoscopic-assisted repair for sagittal synostosis

Matthew D. Smyth and Kamlesh B. Patel

The craniofacial team at St. Louis Children's Hospital has been performing endoscopy-assisted synostosis surgery since 2006. Most infants with single-suture synostosis younger than 6 months of age are candidates. The sphinx position is used, with two incisions: one posterior to the bregma and one anterior to the lambda. The endoscope is incorporated primarily for epidural dissection and bone edge cauterization. Blood products are available but rarely needed with single suturectomies. Patients are managed on the floor after surgery and discharged to home on postoperative day 1, with helmet therapy coordinated and initiated immediately after surgery and continued until about 12 months of age.

The video can be found here: https://vimeo.com/513939623

Open access

Introduction. Innovations in craniosynostosis surgery

Craig Birgfeld, Federico Di Rocco, Cormac O. Maher, Mark R. Proctor, and Matthew D. Smyth

Free access

Management of sagittal synostosis in the Synostosis Research Group: baseline data and early outcomes

Cordell M. Baker, Vijay M. Ravindra, Barbu Gociman, Faizi A. Siddiqi, Jesse A. Goldstein, Matthew D. Smyth, Amy Lee, Richard C. E. Anderson, Kamlesh B. Patel, Craig Birgfeld, Ian F. Pollack, Thomas Imahiyerobo, John R. W. Kestle, and for the Synostosis Research Group

OBJECTIVE

Sagittal synostosis is the most common form of isolated craniosynostosis. Although some centers have reported extensive experience with this condition, most reports have focused on a single center. In 2017, the Synostosis Research Group (SynRG), a multicenter collaborative network, was formed to study craniosynostosis. Here, the authors report their early experience with treating sagittal synostosis in the network. The goals were to describe practice patterns, identify variations, and generate hypotheses for future research.

METHODS

All patients with a clinical diagnosis of isolated sagittal synostosis who presented to a SynRG center between March 1, 2017, and October 31, 2019, were included. Follow-up information through October 31, 2020, was included. Data extracted from the prospectively maintained SynRG registry included baseline parameters, surgical adjuncts and techniques, complications prior to discharge, and indications for reoperation. Data analysis was descriptive, using frequencies for categorical variables and means and medians for continuous variables.

RESULTS

Two hundred five patients had treatment for sagittal synostosis at 5 different sites. One hundred twenty-six patients were treated with strip craniectomy and 79 patients with total cranial vault remodeling. The most common strip craniectomy was wide craniectomy with parietal wedge osteotomies (44%), and the most common cranial vault remodeling procedure was total vault remodeling without forehead remodeling (63%). Preoperative mean cephalic indices (CIs) were similar between treatment groups: 0.69 for strip craniectomy and 0.68 for cranial vault remodeling. Thirteen percent of patients had other health problems. In the cranial vault cohort, 81% of patients who received tranexamic acid required a transfusion compared with 94% of patients who did not receive tranexamic acid. The rates of complication were low in all treatment groups. Five patients (2%) had an unintended reoperation. The mean change in CI was 0.09 for strip craniectomy and 0.06 for cranial vault remodeling; wide craniectomy resulted in a greater change in CI in the strip craniectomy group.

CONCLUSIONS

The baseline severity of scaphocephaly was similar across procedures and sites. Treatment methods varied, but cranial vault remodeling and strip craniectomy both resulted in satisfactory postoperative CIs. Use of tranexamic acid may reduce the need for transfusion in cranial vault cases. The wide craniectomy technique for strip craniectomy seemed to be associated with change in CI. Both findings seem amenable to testing in a randomized controlled trial.

Free access

Dural augmentation approaches and complication rates after posterior fossa decompression for Chiari I malformation and syringomyelia: a Park-Reeves Syringomyelia Research Consortium study

Alexander T. Yahanda, P. David Adelson, S. Hassan A. Akbari, Gregory W. Albert, Philipp R. Aldana, Tord D. Alden, Richard C. E. Anderson, David F. Bauer, Tammy Bethel-Anderson, Douglas L. Brockmeyer, Joshua J. Chern, Daniel E. Couture, David J. Daniels, Brian J. Dlouhy, Susan R. Durham, Richard G. Ellenbogen, Ramin Eskandari, Timothy M. George, Gerald A. Grant, Patrick C. Graupman, Stephanie Greene, Jeffrey P. Greenfield, Naina L. Gross, Daniel J. Guillaume, Todd C. Hankinson, Gregory G. Heuer, Mark Iantosca, Bermans J. Iskandar, Eric M. Jackson, James M. Johnston, Robert F. Keating, Mark D. Krieger, Jeffrey R. Leonard, Cormac O. Maher, Francesco T. Mangano, J. Gordon McComb, Sean D. McEvoy, Thanda Meehan, Arnold H. Menezes, Brent R. O’Neill, Greg Olavarria, John Ragheb, Nathan R. Selden, Manish N. Shah, Chevis N. Shannon, Joshua S. Shimony, Matthew D. Smyth, Scellig S. D. Stone, Jennifer M. Strahle, James C. Torner, Gerald F. Tuite, Scott D. Wait, John C. Wellons III, William E. Whitehead, Tae Sung Park, and David D. Limbrick Jr.

OBJECTIVE

Posterior fossa decompression with duraplasty (PFDD) is commonly performed for Chiari I malformation (CM-I) with syringomyelia (SM). However, complication rates associated with various dural graft types are not well established. The objective of this study was to elucidate complication rates within 6 months of surgery among autograft and commonly used nonautologous grafts for pediatric patients who underwent PFDD for CM-I/SM.

METHODS

The Park-Reeves Syringomyelia Research Consortium database was queried for pediatric patients who had undergone PFDD for CM-I with SM. All patients had tonsillar ectopia ≥ 5 mm, syrinx diameter ≥ 3 mm, and ≥ 6 months of postoperative follow-up after PFDD. Complications (e.g., pseudomeningocele, CSF leak, meningitis, and hydrocephalus) and postoperative changes in syrinx size, headaches, and neck pain were compared for autograft versus nonautologous graft.

RESULTS

A total of 781 PFDD cases were analyzed (359 autograft, 422 nonautologous graft). Nonautologous grafts included bovine pericardium (n = 63), bovine collagen (n = 225), synthetic (n = 99), and human cadaveric allograft (n = 35). Autograft (103/359, 28.7%) had a similar overall complication rate compared to nonautologous graft (143/422, 33.9%) (p = 0.12). However, nonautologous graft was associated with significantly higher rates of pseudomeningocele (p = 0.04) and meningitis (p < 0.001). The higher rate of meningitis was influenced particularly by the higher rate of chemical meningitis (p = 0.002) versus infectious meningitis (p = 0.132). Among 4 types of nonautologous grafts, there were differences in complication rates (p = 0.02), including chemical meningitis (p = 0.01) and postoperative nausea/vomiting (p = 0.03). Allograft demonstrated the lowest complication rates overall (14.3%) and yielded significantly fewer complications compared to bovine collagen (p = 0.02) and synthetic (p = 0.003) grafts. Synthetic graft yielded higher complication rates than autograft (p = 0.01). Autograft and nonautologous graft resulted in equal improvements in syrinx size (p < 0.0001). No differences were found for postoperative changes in headaches or neck pain.

CONCLUSIONS

In the largest multicenter cohort to date, complication rates for dural autograft and nonautologous graft are similar after PFDD for CM-I/SM, although nonautologous graft results in higher rates of pseudomeningocele and meningitis. Rates of meningitis differ among nonautologous graft types. Autograft and nonautologous graft are equivalent for reducing syrinx size, headaches, and neck pain.

Free access

Use of fast-sequence spine MRI in pediatric patients

Jordan I. Gewirtz, Alex Skidmore, Matthew D. Smyth, David D. Limbrick Jr., Manu Goyal, Joshua S. Shimony, Robert C. McKinstry, Mari L. Groves, and Jennifer M. Strahle

OBJECTIVE

The immediate and long-term risk of anesthesia in the pediatric population is controversial. Traditional spine MRI protocols require the patient to remain still during the examination, and in young children this frequently results in the need for sedation administration. The authors’ goal was to develop an abbreviated spine MRI protocol to reduce sedation administration in young patients undergoing spine MRI.

METHODS

After IRB approval, the medical records of all pediatric patients who underwent a fast spine MRI protocol between 2017 and 2019 were reviewed. The protocol consisted of T2-weighted half-Fourier acquisition single-shot turbo spin echo, T1-weighted turbo spin echo, and T2-weighted STIR sequences acquired in the sagittal plane. The total acquisition time was 2 minutes with no single sequence acquisition longer than 60 seconds. Interpretability of the scans was assessed in accordance with the radiology report in conjunction with the neurosurgeon’s clinical notes.

RESULTS

A total of 47 fast spine MRI sessions were performed in 45 patients. The median age at the time of the MRI was 2.4 years (25th–75th quartile, 1.1–4.3 years; range 0.16–18.58 years). The most common indication for imaging was to rule out or follow a known syrinx (n = 30), followed by the need to rule out or follow known spinal dysraphism (n = 22). There were no uninterpretable or unusable scans. Eight of 47 scans were noted to have moderate motion artifact limitations with respect to the quality of the scan. Seven patients underwent a subsequent MRI with a sedated standard spine protocol within 1 year from the fast scan, which confirmed the findings on the fast MRI protocol with no new findings identified.

CONCLUSIONS

The authors report the first pediatric series of a fast spine MRI protocol for use in young patients. The protocol does not require sedation and is able to identify and monitor syrinx, spinal dysraphism, and potentially other intraspinal anomalies.

Free access

3D pediatric cranial bone imaging using high-resolution MRI for visualizing cranial sutures: a pilot study

Kamlesh B. Patel, Cihat Eldeniz, Gary B. Skolnick, Udayabhanu Jammalamadaka, Paul K. Commean, Manu S. Goyal, Matthew D. Smyth, and Hongyu An

OBJECTIVE

There is an unmet need to perform imaging in young children and obtain CT-equivalent cranial bone images without subjecting the patients to radiation. In this study, the authors propose using a high-resolution fast low-angle shot golden-angle 3D stack-of-stars radial volumetric interpolated breath-hold examination (GA-VIBE) MRI sequence that is intrinsically robust to motion and has enhanced bone versus soft-tissue contrast.

METHODS

Patients younger than 11 years of age, who underwent clinical head CT scanning for craniosynostosis or other cranial malformations, were eligible for the study. 3D reconstructed images created from the GA-VIBE MRI sequence and the gold-standard CT scan were randomized and presented to 3 blinded reviewers. For all image sets, each reviewer noted the presence or absence of the 6 primary cranial sutures and recorded on 5-point Likert scales whether they recommended a second scan be performed.

RESULTS

Eleven patients (median age 1.8 years) underwent MRI after clinical head CT scanning was performed. Five of the 11 patients were sedated. Three clinicians reviewed the images, and there were no cases, either with CT scans or MR images, in which a reviewer agreed a repeat scan was required for diagnosis or surgical planning. The reviewers reported clear imaging of the regions of interest on 99% of the CT reviews and 96% of the MRI reviews. With CT as the standard, the sensitivity and specificity of the GA-VIBE MRI sequence to detect suture closure were 97% and 96%, respectively (n = 198 sutures read).

CONCLUSIONS

The 3D reconstructed images using the GA-VIBE sequence in comparison to the CT scans created clinically acceptable cranial images capable of detecting cranial sutures. Future directions include reducing the scan time, improving motion correction, and automating postprocessing for clinical utility.

Free access

Editorial. Pediatric neurosurgery along with Children's Hospitals' innovations are rapid and uniform in response to the COVID-19 pandemic

Howard L. Weiner, P. David Adelson, Douglas L. Brockmeyer, Cormac O. Maher, Nalin Gupta, Matthew D. Smyth, Andrew Jea, Jeffrey P. Blount, Jay Riva-Cambrin, Sandi K. Lam, Edward S. Ahn, Gregory W. Albert, and Jeffrey R. Leonard

Free access

Endoscopic treatment of combined metopic-sagittal craniosynostosis

Ema Zubovic, Gary B. Skolnick, Sybill D. Naidoo, Mark Bellanger, Matthew D. Smyth, and Kamlesh B. Patel

OBJECTIVE

Combined metopic-sagittal craniosynostosis is traditionally treated with open cranial vault remodeling and fronto-orbital advancement, sometimes in multiple operations. Endoscopic treatment of this multisuture synostosis presents a complex challenge for the surgeon and orthotist.

METHODS

The authors retrospectively analyzed the preoperative and 1-year postoperative CT scans of 3 patients with combined metopic-sagittal synostosis, all of whom were treated with simultaneous endoscope-assisted craniectomy of the metopic and sagittal sutures followed by helmet therapy. Established anthropometric measurements were applied to assess pre- and postoperative morphology, including cranial index and interfrontal divergence angle (IFDA). Patients’ measurements were compared to those obtained in 18 normal controls.

RESULTS

Two boys and one girl underwent endoscope-assisted craniectomy at a mean age of 81 days. The mean preoperative cranial index was 0.70 (vs control mean of 0.82, p = 0.009), corrected postoperatively to a mean of 0.82 (vs control mean of 0.80, p = 0.606). The mean preoperative IFDA was 110.4° (vs control mean of 152.6°, p = 0.017), corrected postoperatively to a mean of 139.1° (vs control mean of 140.3°, p = 0.348). The mean blood loss was 100 mL and the mean length of stay was 1.7 days. No patient underwent reoperation. The mean clinical follow-up was 3.4 years.

CONCLUSIONS

Endoscope-assisted craniectomy with helmet therapy is a viable single-stage treatment option for combined metopic-sagittal synostosis, providing correction of the stigmata of trigonoscaphocephaly, with normalization of the cranial index and IFDA.

Free access

Radiological and clinical associations with scoliosis outcomes after posterior fossa decompression in patients with Chiari malformation and syrinx from the Park-Reeves Syringomyelia Research Consortium

Jennifer M. Strahle, Rukayat Taiwo, Christine Averill, James Torner, Jordan I. Gewirtz, Chevis N. Shannon, Christopher M. Bonfield, Gerald F. Tuite, Tammy Bethel-Anderson, Richard C. E. Anderson, Michael P. Kelly, Joshua S. Shimony, Ralph G. Dacey Jr., Matthew D. Smyth, Tae Sung Park, David D. Limbrick Jr., and for the Park-Reeves Syringomyelia Research Consortium

OBJECTIVE

In patients with Chiari malformation type I (CM-I) and a syrinx who also have scoliosis, clinical and radiological predictors of curve regression after posterior fossa decompression are not well known. Prior reports indicate that age younger than 10 years and a curve magnitude < 35° are favorable predictors of curve regression following surgery. The aim of this study was to determine baseline radiological factors, including craniocervical junction alignment, that might predict curve stability or improvement after posterior fossa decompression.

METHODS

A large multicenter retrospective and prospective registry of pediatric patients with CM-I (tonsils ≥ 5 mm below the foramen magnum) and a syrinx (≥ 3 mm in width) was reviewed for clinical and radiological characteristics of CM-I, syrinx, and scoliosis (coronal curve ≥ 10°) in patients who underwent posterior fossa decompression and who also had follow-up imaging.

RESULTS

Of 825 patients with CM-I and a syrinx, 251 (30.4%) were noted to have scoliosis present at the time of diagnosis. Forty-one (16.3%) of these patients underwent posterior fossa decompression and had follow-up imaging to assess for scoliosis. Twenty-three patients (56%) were female, the mean age at time of CM-I decompression was 10.0 years, and the mean follow-up duration was 1.3 years. Nine patients (22%) had stable curves, 16 (39%) showed improvement (> 5°), and 16 (39%) displayed curve progression (> 5°) during the follow-up period. Younger age at the time of decompression was associated with improvement in curve magnitude; for those with curves of ≤ 35°, 17% of patients younger than 10 years of age had curve progression compared with 64% of those 10 years of age or older (p = 0.008). There was no difference by age for those with curves > 35°. Tonsil position, baseline syrinx dimensions, and change in syrinx size were not associated with the change in curve magnitude. There was no difference in progression after surgery in patients who were also treated with a brace compared to those who were not treated with a brace for scoliosis.

CONCLUSIONS

In this cohort of patients with CM-I, a syrinx, and scoliosis, younger age at the time of decompression was associated with improvement in curve magnitude following surgery, especially in patients younger than 10 years of age with curves of ≤ 35°. Baseline tonsil position, syrinx dimensions, frontooccipital horn ratio, and craniocervical junction morphology were not associated with changes in curve magnitude after surgery.

Free access

Factors associated with syrinx size in pediatric patients treated for Chiari malformation type I and syringomyelia: a study from the Park-Reeves Syringomyelia Research Consortium

Andrew T. Hale, P. David Adelson, Gregory W. Albert, Philipp R. Aldana, Tord D. Alden, Richard C. E. Anderson, David F. Bauer, Christopher M. Bonfield, Douglas L. Brockmeyer, Joshua J. Chern, Daniel E. Couture, David J. Daniels, Susan R. Durham, Richard G. Ellenbogen, Ramin Eskandari, Timothy M. George, Gerald A. Grant, Patrick C. Graupman, Stephanie Greene, Jeffrey P. Greenfield, Naina L. Gross, Daniel J. Guillaume, Gregory G. Heuer, Mark Iantosca, Bermans J. Iskandar, Eric M. Jackson, James M. Johnston, Robert F. Keating, Jeffrey R. Leonard, Cormac O. Maher, Francesco T. Mangano, J. Gordon McComb, Thanda Meehan, Arnold H. Menezes, Brent O’Neill, Greg Olavarria, Tae Sung Park, John Ragheb, Nathan R. Selden, Manish N. Shah, Matthew D. Smyth, Scellig S. D. Stone, Jennifer M. Strahle, Scott D. Wait, John C. Wellons, William E. Whitehead, Chevis N. Shannon, David D. Limbrick Jr., and for the Park-Reeves Syringomyelia Research Consortium Investigators

OBJECTIVE

Factors associated with syrinx size in pediatric patients undergoing posterior fossa decompression (PFD) or PFD with duraplasty (PFDD) for Chiari malformation type I (CM-I) with syringomyelia (SM; CM-I+SM) are not well established.

METHODS

Using the Park-Reeves Syringomyelia Research Consortium registry, the authors analyzed variables associated with syrinx radiological outcomes in patients (< 20 years old at the time of surgery) with CM-I+SM undergoing PFD or PFDD. Syrinx resolution was defined as an anteroposterior (AP) diameter of ≤ 2 mm or ≤ 3 mm or a reduction in AP diameter of ≥ 50%. Syrinx regression or progression was defined using 1) change in syrinx AP diameter (≥ 1 mm), or 2) change in syrinx length (craniocaudal, ≥ 1 vertebral level). Syrinx stability was defined as a < 1-mm change in syrinx AP diameter and no change in syrinx length.

RESULTS

The authors identified 380 patients with CM-I+SM who underwent PFD or PFDD. Cox proportional hazards modeling revealed younger age at surgery and PFDD as being independently associated with syrinx resolution, defined as a ≤ 2-mm or ≤ 3-mm AP diameter or ≥ 50% reduction in AP diameter. Radiological syrinx resolution was associated with improvement in headache (p < 0.005) and neck pain (p < 0.011) after PFD or PFDD. Next, PFDD (p = 0.005), scoliosis (p = 0.007), and syrinx location across multiple spinal segments (p = 0.001) were associated with syrinx diameter regression, whereas increased preoperative frontal-occipital horn ratio (FOHR; p = 0.007) and syrinx location spanning multiple spinal segments (p = 0.04) were associated with syrinx length regression. Scoliosis (HR 0.38 [95% CI 0.16–0.91], p = 0.03) and smaller syrinx diameter (5.82 ± 3.38 vs 7.86 ± 3.05 mm; HR 0.60 [95% CI 0.34–1.03], p = 0.002) were associated with syrinx diameter stability, whereas shorter preoperative syrinx length (5.75 ± 4.01 vs 9.65 ± 4.31 levels; HR 0.21 [95% CI 0.12–0.38], p = 0.0001) and smaller pB-C2 distance (6.86 ± 1.27 vs 7.18 ± 1.38 mm; HR 1.44 [95% CI 1.02–2.05], p = 0.04) were associated with syrinx length stability. Finally, younger age at surgery (8.19 ± 5.02 vs 10.29 ± 4.25 years; HR 1.89 [95% CI 1.31–3.04], p = 0.01) was associated with syrinx diameter progression, whereas increased postoperative syrinx diameter (6.73 ± 3.64 vs 3.97 ± 3.07 mm; HR 3.10 [95% CI 1.67–5.76], p = 0.003), was associated with syrinx length progression. PFD versus PFDD was not associated with syrinx progression or reoperation rate.

CONCLUSIONS

These data suggest that PFDD and age are independently associated with radiological syrinx improvement, although forthcoming results from the PFDD versus PFD randomized controlled trial (NCT02669836, clinicaltrials.gov) will best answer this question.