You are looking at 1 - 3 of 3 items for

  • Refine by Access: all x
  • By Author: Sedora-Roman, Neda I. x
Clear All
Restricted access

Shih-Shan Lang, Alexander M. Tucker, Craig Schreiber, Phillip B. Storm, Hongyan Liu, Yimei Li, Rebecca Ichord, Lauren A. Beslow, Neda I. Sedora-Roman, Mougnyan Cox, Hussein Nasser, Arastoo Vossough, Michael J. Fisher, Todd J. Kilbaugh, and Jimmy W. Huh


Digital subtraction angiography (DSA) is commonly performed after pial synangiosis surgery for pediatric moyamoya disease to assess the degree of neovascularization. However, angiography is invasive, and the risk of ionizing radiation is a concern in children. In this study, the authors aimed to identify whether arterial spin labeling (ASL) can predict postoperative angiogram grading. In addition, they sought to determine whether patients who underwent ASL imaging without DSA had similar postoperative outcomes when compared with patients who received ASL imaging and postoperative DSA.


The medical records of pediatric patients who underwent pial synangiosis for moyamoya disease at a quaternary children’s hospital were reviewed during a 10-year period. ASL-only and ASL+DSA cohorts were analyzed. The frequency of preoperative and postoperative symptoms was analyzed within each cohort. Three neuroradiologists assigned a visual ASL grade for each patient indicating the change from the preoperative to postoperative ASL perfusion sequences. A postoperative neovascularization grade was also assigned for patients who underwent DSA.


Overall, 21 hemispheres of 14 patients with ASL only and 14 hemispheres of 8 patients with ASL+DSA were analyzed. The groups had similar rates of MRI evidence of acute or chronic stroke preoperatively (61.9% in the ASL-only group and 64.3% in the ASL+DSA group). In the entire cohort, transient ischemic attack (TIA) (p = 0.027), TIA composite (TIA or unexplained neurological symptoms; p = 0.0006), chronic headaches (p = 0.035), aphasia (p = 0.019), and weakness (p = 0.001) all had decreased frequency after intervention. The authors found a positive association between revascularization observed on DSA and the visual ASL grading (p = 0.048). The visual ASL grades in patients with an angiogram indicating robust neovascularization demonstrated improved perfusion when compared with the ASL grades of patients with a poor neovascularization.


Noninvasive ASL perfusion imaging had an association with postoperative DSA neoangiogenesis following pial synangiosis surgery in children. There were no significant postoperative stroke differences between the ASL-only and ASL+DSA cohorts. Both cohorts demonstrated significant improvement in preoperative symptoms after surgery. Further study in larger cohorts is necessary to determine whether the results of this study are validated in order to circumvent the invasive catheter angiogram.

Restricted access

Wesley Hsu, Ahmed Mohyeldin, Sagar R. Shah, Colette M. ap Rhys, Lakesha F. Johnson, Neda I. Sedora-Roman, Thomas A. Kosztowski, Ola A. Awad, Edward F. McCarthy, David M. Loeb, Jean-Paul Wolinsky, Ziya L. Gokaslan, and Alfredo Quiñones-Hinojosa


Chordoma is a malignant bone neoplasm hypothesized to arise from notochordal remnants along the length of the neuraxis. Recent genomic investigation of chordomas has identified T (Brachyury) gene duplication as a major susceptibility mutation in familial chordomas. Brachyury plays a vital role during embryonic development of the notochord and has recently been shown to regulate epithelial-to-mesenchymal transition in epithelial-derived cancers. However, current understanding of the role of this transcription factor in chordoma is limited due to the lack of availability of a fully characterized chordoma cell line expressing Brachyury. Thus, the objective of this study was to establish the first fully characterized primary chordoma cell line expressing gain of the T gene locus that readily recapitulates the original parental tumor phenotype in vitro and in vivo.


Using an intraoperatively obtained tumor sample from a 61-year-old woman with primary sacral chordoma, a chordoma cell line (JHC7, or Johns Hopkins Chordoma Line 7) was established. Molecular characterization of the primary tumor and cell line was conducted using standard immunostaining and Western blotting. Chromosomal aberrations and genomic amplification of the T gene in this cell line were determined. Using this cell line, a xenograft model was established and the histopathological analysis of the tumor was performed. Silencing of Brachyury and changes in gene expression were assessed.


The authors report, for the first time, the successful establishment of a chordoma cell line (JHC7) from a patient with pathologically confirmed sacral chordoma. This cell line readily forms tumors in immunodeficient mice that recapitulate the parental tumor phenotype with conserved histological features consistent with the parental tumor. Furthermore, it is demonstrated for the first time that silencing of Brachyury using short hairpin RNA renders the morphology of chordoma cells to a more differentiated-like state and leads to complete growth arrest and senescence with an inability to be passaged serially in vitro.


This report represents the first xenograft model of a sacral chordoma line described in the literature and the first cell line established with stable Brachyury expression. The authors propose that Brachyury is an attractive therapeutic target in chordoma and that JHC7 will serve as a clinically relevant model for the study of this disease.