Browse

You are looking at 71 - 80 of 108 items for

  • Refine by Access: all x
  • By Author: Preul, Mark C. x
Clear All
Restricted access

Mark C. Preul, Patrick K. Campbell, David S. Garlick, and Robert F. Spetzler

Object

The aim of this study was to evaluate the application and effects of a novel, nonswelling, polyethylene glycol-based hydrogel adhesion barrier and sealant in a canine laminectomy model of CSF leakage and adhesion formation.

Methods

After full-width L-2 and L-5 laminectomies, 1-cm midline durotomies were created and sutured closed, except for the last 1–2 mm on the cranial end to create spontaneous CSF leakage. All 5 control animals received no further treatment. Experimental animals received hydrogel at both durotomy sites via either the Dual Liquid applicator (5 animals) or MicroMyst gas-assisted sprayer (5 animals). Sealing of the CSF leak was confirmed by Valsalva maneuver. At 2 months, 2 animals from each group were killed to evaluate dural healing and epidural adhesion formation. The remaining animals were similarly evaluated 4 months after surgery. One animal died at 66 days due to a cause unrelated to hydrogel treatment.

Results

In hydrogel-treated animals, all leaking durotomies were sealed intraoperatively. All animals recovered uneventfully. There were no treatment-related health effects. MicroMyst hydrogel application was more controlled, slower, and significantly less thick (p = 0.0094) than Dual Liquid application. All 5 control animals developed subcutaneous CSF accumulations under the incision within days of surgery, compared with only 1 of 10 hydrogel-treated animals (p = 0.002). At 2 and 4 months, control laminectomy sites showed extensive, dense epidural adhesions blending with neodura, compared with hydrogel-treated sites (p < 0.0001 and p = 0.0234, respectively). At 2 months in hydrogel-treated animals, gel filled the epidural space and no epidural adhesions were noted (p < 0.0001 relative to controls). At 4 months, the hydrogel was absorbed. The hydrogel space was filled with scant, loosely organized connective tissue.

Conclusions

Hydrogel prevented CSF leakage and mitigated epidural scarring without affecting healing of the dura or laminectomy site. The safety profile of the hydrogel appears favorable due to its synthetic composition, polyethylene glycol chemistry, minimal local tissue response, and lack of neurological deficits. Controlled application of such hydrogel materials may reduce the incidence of postoperative leaks, prevent adhesion formation and thus improve recovery from spinal surgery, and improve identification of tissue planes for reoperations.

Restricted access

Robert W. Ryan, Tamir Wolf, Robert F. Spetzler, Stephen W. Coons, Yoel Fink, and Mark C. Preul

Object

The CO2 laser has an excellent profile for use in neurosurgery. Its high absorption in water results in low thermal spread, sparing adjacent tissue. Use of this laser has been limited to line-of-sight applications because no solid fiber optic cables could transmit its wavelength. Flexible photonic bandgap fiber technology enables delivery of CO2 laser energy through a flexible fiber easily manipulated in a handheld device. The authors examined and compared the first use of this CO2 laser fiber to conventional methods for incising neural tissue.

Methods

Carbon dioxide laser energy was delivered in pulsed or continuous wave settings for different power settings, exposure times, and distances to cortical tissue of 6 anesthetized swine. Effects of CO2 energy on the tissue were compared with bipolar cautery using a standard pial incision technique, and with scalpel incisions without cautery. Tissue was processed for histological analysis (using H & E, silver staining, and glial fibrillary acidic protein immunohistochemistry) and scanning electron microscopy, and lesion measurements were made.

Results

Light microscopy and scanning electron microscopy revealed laser incisions of consistent shape, with central craters surrounded by limited zones of desiccated and edematous tissue. Increased laser power resulted in deeper but not significantly wider incisions. Bipolar cautery lesions showed desiccated and edematous zones but did not incise the pia, and width increased more than depth with higher power. Incisions made without using cautery produced hemorrhage but minimal adjacent tissue damage.

Conclusions

The photonic bandgap fiber CO2 laser produced reliable cortical incisions, adjustable over a range of settings, with minimal adjacent thermal tissue damage. Ease of application under the microscope suggests this laser system has reached true practicality for neurosurgery.

Full access

Wolfgang K. Pfisterer, Ronald A. Nieman, Adrienne C. Scheck, Stephen W. Coons, Robert F. Spetzler, and Mark C. Preul

Object

The goal in this study was to determine if proton (1H) MR spectroscopy can differentiate meningioma grade and is associated with interpretations of biological behavior; the study was performed using ex vivo high-resolution spectra indicating metabolic characteristics.

Methods

Sixty-eight resected tissue samples of meningiomas were examined using ex vivo 1H MR spectroscopy. Of these meningiomas, 46 were WHO Grade I, 14 were WHO Grade II, and 8 were WHO Grade III. Fifty-nine were primary meningiomas and 9 were recurrences. Invasion of adjacent tissue (dura mater, bone, venous sinus, brain) was found in 32 cases. Thirty-nine meningiomas did not rapidly recur (as defined by expansion on MR imaging within a 5-year follow-up period), whereas rapid recurrence was confirmed in 24 meningiomas, and follow-up status was unknown in 5 cases.

Results

The absolute concentrations of total alanine and creatine were decreased in high-grade compared with low-grade meningiomas, as was the ratio of glycine to alanine (all p < 0.05). Additionally, alanine and the glycine/alanine ratio distinguished between primary and recurrent meningiomas (all p < 0.05). Finally, the absolute concentrations of alanine and creatine, and the glycine/alanine and choline/glutamate ratios were associated with rapid recurrence (p < 0.05).

Conclusions

. These data indicate that meningioma tissue can be characterized by metabolic parameters that are not typically identified by histopathological analysis alone. Creatine, glycine, and alanine may be used as markers of meningioma grade, recurrence, and the likelihood of rapid recurrence. These data validate a previous study of a separate group of Grade I meningiomas.

Restricted access

Pakrit Jittapiromsak, Pushpa Deshmukh, Peter Nakaji, Robert F. Spetzler, and Mark C. Preul

Object

The standard superior craniotomy approach through the orbital roof is obstructed by numerous muscles, nerves, and vessels. Accessing the medial intraconal space also involves considerable brain retraction. The authors present a modified approach through the frontal sinus that overcomes these limitations.

Methods

Seven fixed silicone-injected cadaveric specimens were dissected bilaterally. In addition to the superior orbital wall, the ethmoidal sinuses and medial orbital wall were removed. The anatomical relationships between the major neurovascular complexes in the medial intraconal space and the optic nerve were observed.

Results

Intraconally, working space was created both in a “superior window” between the superior oblique and levator palpebrae muscle and in a “medial window” between the superior oblique and medial rectus muscle. The superior window mainly created an ipsilateral trajectory to the deep target. The medial window, which created a contralateral trajectory, provided a more inferior view of the medial intraconal space. Removal of the medial orbital wall further widened the exposure obtained from the superior window. The combination of these working windows makes the medial surface of the optic nerve available for exploration from multiple angles. Most of the major neurovascular complexes of the posterior orbit can be retracted safely without impinging on the optic nerve.

Conclusions

This novel extradural transfrontoethmoidal approach affords a direct view to the medial posterior orbit without major conflicts with intraconal neurovascular structures and requires minimal brain manipulation. The approach appears to offer advantages for medially located intraconal lesions.

Full access

Ulises García-González, Daniel D. Cavalcanti, Abhishek Agrawal, L. Fernando Gonzalez, Robert C. Wallace, Robert F. Spetzler, and Mark C. Preul

Object

There are few systematic investigations of the dissected surgical anatomy of the diploic venous system (DVS) in the neuroanatomical literature. The authors describe the DVS relative to different common neurosurgical approaches. Knowledge of this system can help avoid potential sources of unacceptable bleeding and may impact healing of the cranium.

Methods

Using a high-speed drill with a 2-mm bit, the authors removed the outer layer of the compact bone in the skull to expose the DVS in 12 formalin-fixed cadaver heads. Pterional, supraorbital, and modified orbitozygomatic craniotomies were performed to delineate the relationship of the DVS.

Results

The draining point of the frontal diploic vein (FDV) was located near the supraorbital notch. The draining point of the anterior temporal diploic vein (ATDV) was located in all pterional areas; the draining point of the posterior temporal diploic vein (PTDV) was located in all asterional areas. The PTDV was the dominant diploic vessel in all sides. The FDV and ATDV could be damaged during supraorbital, modified orbitozygomatic, and pterional craniotomies. The anterior DVS connected with the sphenoparietal and superior sagittal sinus (SSS). The posterior DVS connected with the transverse and sigmoid sinuses and was the dominant diploic vessel in all 24 sides. Of all the major diploic vessels, the location and pattern of distribution of the FDV were the most constant. The parietal bone contained the most diploic vessels. No diploic veins were found in the area delimited by the temporal squama.

Conclusions

The pterional, orbitozygomatic, and supraorbital approaches place the FDV and ATDV at risk. The major anterior diploic system connects the SSS with the sphenoparietal sinus. The posterior diploic system connects the SSS with the transverse and sigmoid sinuses.

Full access

Daniel D. Cavalcanti, William Feindel, James T. Goodrich, T. Forcht Dagi, Charles J. Prestigiacomo, and Mark C. Preul

In the 15th century, brain illustration began to change from a schematic system that involved scant objective rendering of the brain, to accurate depictions based on anatomical dissections that demanded significant artistic talent. Notable examples of this innovation are the drawings of Leonardo da Vinci (1498–1504), Andreas Vesalius' association with the bottega of Titian to produce the drawings of Vesalius' De humani corporis fabrica (1543), and Christopher Wren's illustrations for Thomas Willis' Cerebri Anatome (1664). These works appeared during the Renaissance and Age of Enlightenment, when advances in brain imaging, or really brain rendering, reflected not only the abilities and dedications of the artists, but also the influences of important cultural and scientific factors. Anatomy and human dissection became popular social phenomena as well as scholarly pursuits, linked with the world of the fine arts. The working philosophy of these artists involved active participation in both anatomical study and illustration, and the belief that their discoveries of the natural world could best be communicated by rendering them in objective form (that is, with realistic perspective). From their studies emerged the beginning of contemporary brain imaging. In this article, the authors examine how the brain began to be imaged in realism within a cultural and scientific milieu that witnessed the emergence of anatomical dissection, the geometry of linear perspective, and the closer confluence of art and science.

Full access

Robert W. Ryan, Robert F. Spetzler, and Mark C. Preul

In this historical review the authors examine the important developments that have led to the availability of laser energy to neurosurgeons as a unique and sometimes invaluable tool. They review the physical science behind the function of lasers, as well as how and when various lasers based on different lasing mediums were discovered. They also follow the close association between advances in laser technology and their application in biomedicine, from early laboratory experiments to the first clinical experiences. Because opinions on the appropriate role of lasers in neurosurgery vary widely, the historical basis for some of these views is explored. Initial enthusiasm for a technology that appears to have innate advantages for safe resections has often given way to the strict limitations and demands of the neurosurgical operating theater. However, numerous creative solutions to improve laser delivery, power, safety, and ergonomics demonstrate the important role that technological advances in related scientific fields continue to offer neurosurgery. Benefiting from the most recent developments in materials science, current CO2 laser delivery systems provide a useful addition to the neurosurgical armamentarium when applied in the correct circumstances and reflect the important historical advances that come about from the interplay between neurosurgery and technology.

Full access

Ali A. Baaj, Juan S. Uribe, Fernando L. Vale, Mark C. Preul, and Neil R. Crawford

Enthusiasm for cervical disc arthroplasty is based on the premise that motion-preserving devices attenuate the progression of adjacent-segment disease (ASD) in the cervical spine. Arthrodesis, on the other hand, results in abnormal load transfer on adjacent segments, leading to the acceleration of ASD. It has taken several decades of pioneering work to produce clinically relevant devices that mimic the kinematics of the intervertebral disc. The goal of this work is to trace the origins of cervical arthroplasty technology and highlight the attributes of devices currently available in the market.

Full access

Charles J. Prestigiacomo and Mark C. Preul

Restricted access

Nicholas C. Bambakidis, Eric M. Horn, Peter Nakaji, Nicholas Theodore, Elizabeth Bless, Tammy Dellovade, Chiyuan Ma, Xukui Wang, Mark C. Preul, Stephen W. Coons, Robert F. Spetzler, and Volker K. H. Sonntag

Object

Sonic hedgehog (Shh) is a glycoprotein molecule that upregulates the transcription factor Gli1. The Shh protein plays a critical role in the proliferation of endogenous neural precursor cells when directly injected into the spinal cord after a spinal cord injury in adult rodents. Small-molecule agonists of the hedgehog (Hh) pathway were used in an attempt to reproduce these findings through intravenous administration.

Methods

The expression of Gli1 was measured in rat spinal cord after the intravenous administration of an Hh agonist. Ten adult rats received a moderate contusion and were treated with either an Hh agonist (10 mg/kg, intravenously) or vehicle (5 rodents per group) 1 hour and 4 days after injury. The rats were killed 5 days postinjury. Tissue samples were immediately placed in fixative. Samples were immunohistochemically stained for neural precursor cells, and these cells were counted.

Results

Systemic dosing with an Hh agonist significantly upregulated Gli1 expression in the spinal cord (p < 0.005). After spinal contusion, animals treated with the Hh agonist had significantly more nestin-positive neural precursor cells around the rim of the lesion cavity than in vehicle-treated controls (means ± SDs, 46.9 ± 12.9 vs 20.9 ± 8.3 cells/hpf, respectively, p < 0.005). There was no significant difference in the area of white matter injury between the groups.

Conclusions

An intravenous Hh agonist at doses that upregulate spinal cord Gli1 transcription also increases the population of neural precursor cells after spinal cord injury in adult rats. These data support previous findings based on injections of Shh protein directly into the spinal cord.