Browse

You are looking at 1 - 10 of 15 items for

  • Refine by Access: all x
  • By Author: Orbach, Darren B. x
Clear All
Restricted access

Mohammed H. Alomari, Mohamed M. Shahin, Steven J. Fishman, Cindy L. Kerr, Edward R. Smith, Whitney Eng, Melisa Ruiz-Gutierrez, Denise M. Adams, Darren B. Orbach, Gulraiz Chaudry, Raja Shaikh, Rush Chewning, and Ahmad I. Alomari

OBJECTIVE

Clinical manifestations of blue rubber bleb nevus syndrome (BRBNS) and multifocal venous malformation (MVM) vary depending on the location of the lesions. The aim of this study was to assess the risk of developing CSF leaks in patients with epidural venous malformations (VMs).

METHODS

The authors retrospectively investigated the relationship between the development of a CSF leak and the presence of epidural VMs.

RESULTS

Nine patients (5 females) had epidural VMs and presentation that was confirmatory or suggestive of a CSF leak: 4 had BRBNS, 4 had MVMs, and 1 had a solitary VM. Of 66 patients with BRBNS, clinical and imaging features of CSF leak were noted in 3 (4.5%) with epidural VMs at the age of 11–44 years. A fourth patient had suggestive symptoms without imaging confirmation. An epidural blood patch was ineffective in 2 patients, both with more than one source of leakage, requiring surgical repair or decompression. Symptomatic downward displacement of the cerebellar tonsils was noted in 3 patients with MVM and 1 with a solitary VM; 3 required surgical decompression.

CONCLUSIONS

These findings suggest an increased risk of CSF leak in patients with epidural VM, including BRBNS, MVMs, and solitary VMs. Awareness of the association between epidural VM and CSF leakage may facilitate earlier diagnosis and therapeutic intervention.

Restricted access

Alaa S. Montaser, Harishchandra Lalgudi Srinivasan, Steven J. Staffa, David Zurakowski, Anna L. Slingerland, Darren B. Orbach, Moran Hausman-Kedem, Jonathan Roth, and Edward R. Smith

OBJECTIVE

Ivy sign is a radiographic finding on FLAIR MRI sequences and is associated with slow cortical blood flow in moyamoya. Limited data exist on the utility of the ivy sign as a diagnostic and prognostic tool in pediatric patients, particularly outside of Asian populations. The authors aimed to investigate a modified grading scale with which to characterize the prevalence and extent of the ivy sign in children with moyamoya and evaluate its efficacy as a biomarker in predicting postoperative outcomes, including stroke risk.

METHODS

Pre- and postoperative clinical and radiographic data of all pediatric patients (21 years of age or younger) who underwent surgery for moyamoya disease or moyamoya syndrome at two major tertiary referral centers in the US and Israel, between July 2009 and August 2019, were retrospectively reviewed. Ivy sign scores were correlated to Suzuki stage, Matsushima grade, and postoperative stroke rate to quantify the diagnostic and prognostic utility of ivy sign.

RESULTS

A total of 171 hemispheres in 107 patients were included. The median age at the time of surgery was 9 years (range 3 months–21 years). The ivy sign was most frequently encountered in association with Suzuki stage III or IV disease in all vascular territories, including the anterior cerebral artery (53.7%), middle cerebral artery (56.3%), and posterior cerebral artery (47.5%) territories. Following surgical revascularization, 85% of hemispheres with Matsushima grade A demonstrated a concomitant, statistically significant reduction in ivy sign scores (OR 5.3, 95% CI 1.4–20.0; p = 0.013). Postoperatively, revascularized hemispheres that exhibited ivy sign score decreases had significantly lower rates of postoperative stroke (3.4%) compared with hemispheres that demonstrated no reversal of the ivy sign (16.1%) (OR 5.5, 95% CI 1.5–21.0; p = 0.008).

CONCLUSIONS

This is the largest study to date that focuses on the role of the ivy sign in pediatric moyamoya. These data demonstrate that the ivy sign was present in approximately half the pediatric patients with moyamoya with Suzuki stage III or IV disease, when blood flow was most unstable. The authors found that reversal of the ivy sign provided both radiographic and clinical utility as a prognostic biomarker postoperatively, given the statistically significant association with both better Matsushima grades and a fivefold reduction in postoperative stroke rates. These findings can help inform clinical decision-making, and they have particular value in the pediatric population, as the ability to minimize additional radiographic evaluations and tailor radiographic surveillance is requisite.

Restricted access

Alaa Montaser, Jessica Driscoll, Hudson Smith, Madeline B. Karsten, Emily Day, Tina Mounlavongsy, Darren B. Orbach, and Edward R. Smith

OBJECTIVE

Isolated anterior cerebral artery (ACA) territory ischemia in pediatric moyamoya disease (MMD) is rare but has been increasingly recognized, particularly in children manifesting progression of disease in a delayed fashion after middle cerebral artery revascularization surgery. Surgical treatment is complicated by limited graft choices, with the small number of case series largely focused on complex, higher-risk operations (omental flap transfers, large interhemispheric rotational grafts); direct bypass (often untenable in children due to vessel size); or, alternatively, the technically simpler method of multiple burr holes (of limited efficacy outside of infants). Faced with the problem of a growing cohort of pediatric patients with MMD that could benefit from anterior cerebral revascularization, the authors sought to develop a solution that was specifically designed for children and that would be lower risk than the more complex approaches adapted from adult populations but more effective than simple burr holes. In this study, the authors aimed to describe the long-term clinical and radiographic outcomes of a novel approach of pial pericranial dural (PiPeD) revascularization, building on the principles of pial synangiosis but unique in using the pericranium and the dura mater as the primary vascular supply, and employing a larger craniotomy with arachnoid dissection to provide robust full-territory revascularization in all ages with reduced risk relative to more complex procedures.

METHODS

The medical records of all pediatric patients with MMD who presented at a single center between July 2009 and August 2019 were retrospectively reviewed to identify patients with MMD with anterior cerebral territory ischemia. Clinical characteristics, surgical indications, operative techniques, and long-term clinical and radiographic follow-up data were collected and analyzed.

RESULTS

A total of 25 operations (5.6% of total procedures) were performed in 21 patients (mean age 9.4 years [range 1–16.5 years]; 12 female and 9 male). Almost one-third of the patients had syndromic associations, with no familial cases. Complications included 1 patient (4.7%) with a superficial infection, with no postoperative strokes, hemorrhage, seizures, or deaths. Long-term follow-up was available in 18 of 21 patients (mean 24.9 months [range 4–60 months]). Radiographic engraftment was present in 90.9% (20/22 hemispheres), and no new strokes were evident on MRI on long-term follow-up, despite radiographic progression of the disease.

CONCLUSIONS

The use of the pericranium and the dura mater for indirect revascularization provided robust vascularized graft with great flexibility in location and high potential for engraftment, which may obviate more complex and higher-risk operations for ACA territory ischemia. Long-term follow-up demonstrated that PiPeD revascularization conferred durable, long-term radiographic and clinical protection from stroke in pediatric patients with MMD. Based on the results of the current study, the PiPeD technique can be considered an additional tool to the armamentarium of indirect revascularization procedures in select pediatric patients with MMD.

Restricted access

Sarah Jernigan, Armide Storey, Christine Hammer, Coleman Riordan, Darren B. Orbach, R. Michael Scott, and Edward Smith

OBJECTIVE

PHACE syndrome (PHACES) has been linked to cervical and cerebral vascular anomalies, including persistent embryonic anastomoses and progressive steno-occlusive disease. However, no prior studies have documented the long-term response of PHACES patients with moyamoya disease to surgical revascularization with pial or myosynangiosis. The authors present their experience with 8 consecutive patients with PHACES and moyamoya disease.

METHODS

Retrospective review of patients who underwent pial synangiosis revascularization for moyamoya disease with concurrent diagnosis of PHACES.

RESULTS

A total of 8 patients out of 456 surgically treated moyamoya patients had a diagnosis of PHACES. All patients were female, and their average age at the time of surgical treatment was 9.3 years (range 1.8–25.8 years). Five patients had associated basilar artery anomalies or stenosis. All patients had symptomatic narrowing of the petrous segment of the internal carotid artery with tortuous collateralization. Three patients underwent unilateral pial or myo-synangiosis and 5 underwent bilateral procedures. The average hospital length of stay was 5.0 days (range 3–7 days). There were no postoperative complications. Follow-up ranged from 8 to 160 months (average 56 months). Seven of 8 patients have had follow-up angiograms and all had Matsushima grade A or B collateralization without progression of stenosis in other locations. All patients had reduced cortical FLAIR signal on 6-month follow-up MRI and no evidence of new radiographic or clinical strokes.

CONCLUSIONS

Patients with moyamoya disease and PHACES had an intracranial arteriopathy characterized by ectactic anterior vasculature with concomitant basilar artery stenosis, and were all female. The patients had both radiographic and clinical responses to pial synangiosis. The surgical treatment of these patients can be challenging given facial hemangiomas located near the surgical field. Patients with unilateral disease did not have evidence of progression in other cerebral circulation during the given follow-up period.

Restricted access

Katie Pricola Fehnel, Jennifer Klein, Benjamin C. Warf, Edward R. Smith, and Darren B. Orbach

Pediatric hydrocephalus is a well-studied and still incompletely understood entity. One of the physiological means by which hydrocephalus and intracranial hypertension evolve is through perturbations to normal vascular dynamics. Here the authors report a unique case of an extracranial vascular anomaly resulting in persistently elevated intracranial pressures (ICPs) independent of CSF diversion in a patient with a Joubert syndrome–related disorder. The patient developed worsening intracranial hypertension after successful CSF diversion of Dandy-Walker malformation–associated hydrocephalus via endoscopic third ventriculostomy–choroid plexus cauterization (ETV/CPC). Vascular workup and imaging revealed an extracranial arteriovenous fistula of the superficial temporal artery at the site of a prior scalp intravenous catheter. Following microsurgical obliteration of the lesion, ICP normalized from > 30 cm H2O preoperatively to 11 cm H2O postoperatively. A repeat lumbar puncture at 4 months postoperatively again demonstrated normal pressure, and the patient remained asymptomatic for 9 months. Recurrent symptoms at 9 months were attributed to inadequate CSF diversion, and the patient underwent ventriculoperitoneal shunt placement. This is the first report of an extracranial-to-extracranial vascular anastomosis resulting in intracranial hypertension. This case report demonstrates the need to consider extracranial vascular anomalies as potential sources of persistently elevated ICP in the syndromic pediatric population.

Full access

Coleman P. Riordan, Darren B. Orbach, Edward R. Smith, and R. Michael Scott

OBJECTIVE

The most significant adverse outcome of intracranial hemorrhage from an arteriovenous malformation (AVM) is death. This study reviews a single-center experience with pediatric AVMs to quantify the incidence and characterize clinical and radiographic factors associated with sudden death from the hemorrhage of previously undiagnosed AVMs in children.

METHODS

A single-center database review of the period from 2006 to 2017 identified all patients with a first-time intracranial hemorrhage from a previously undiagnosed AVM. Clinical and radiographic data were collected and compared between patients who survived to hospital discharge and those who died at presentation.

RESULTS

A total of 57 patients (average age 10.8 years, range 0.1–19 years) presented with first-time intracranial hemorrhage from a previously undiagnosed AVM during the study period. Of this group, 7/57 (12%) patients (average age 11.5 years, range 6–16 years) suffered hemorrhages that led directly to their deaths. Compared to the cohort of patients who survived their hemorrhage, patients who died were 4 times more likely to have an AVM in the posterior fossa. No clear pattern of antecedent triggering activity (sports, trauma, etc.) was identified, and 3/7 (43%) experienced cardiac arrest in the prehospital setting. Surviving patients were ultimately treated with resection of the AVM in 42/50 (84%) of cases.

CONCLUSIONS

Children who present with hemorrhage from a previously undiagnosed intracranial AVM had a 12% chance of sudden death in our single-institution series of pediatric cerebrovascular cases. Clinical triggers of hemorrhage are unpredictable, but subsequent radiographic evidence of a posterior fossa AVM was present in 57% of fatal cases, and all fatal cases were in locations with high risk of potential herniation. These data support a proactive, aggressive approach toward definitive treatment of AVMs in children.

Full access

Daniel Duran, Philipp Karschnia, Jonathan R. Gaillard, Jason K. Karimy, Mark W. Youngblood, Michael L. DiLuna, Charles C. Matouk, Beverly Aagaard-Kienitz, Edward R. Smith, Darren B. Orbach, Georges Rodesch, Alejandro Berenstein, Murat Gunel, and Kristopher T. Kahle

Vein of Galen malformations (VOGMs) are rare developmental cerebrovascular lesions characterized by fistulas between the choroidal circulation and the median prosencephalic vein. Although the treatment of VOGMs has greatly benefited from advances in endovascular therapy, including technical innovation in interventional neuroradiology, many patients are recalcitrant to procedural intervention or lack accessibility to specialized care centers, highlighting the need for improved screening, diagnostics, and therapeutics. A fundamental obstacle to identifying novel targets is the limited understanding of VOGM molecular pathophysiology, including its human genetics, and the lack of an adequate VOGM animal model. Herein, the known human mutations associated with VOGMs are reviewed to provide a framework for future gene discovery. Gene mutations have been identified in 2 Mendelian syndromes of which VOGM is an infrequent but associated phenotype: capillary malformation–arteriovenous malformation syndrome (RASA1) and hereditary hemorrhagic telangiectasia (ENG and ACVRL1). However, these mutations probably represent only a small fraction of all VOGM cases. Traditional genetic approaches have been limited in their ability to identify additional causative genes for VOGM because kindreds are rare, limited in patient number, and/or seem to have sporadic inheritance patterns, attributable in part to incomplete penetrance and phenotypic variability. The authors hypothesize that the apparent sporadic occurrence of VOGM may frequently be attributable to de novo mutation or incomplete penetrance of rare transmitted variants. Collaboration among treating physicians, patients’ families, and investigators using next-generation sequencing could lead to the discovery of novel genes for VOGM. This could improve the understanding of normal vascular biology, elucidate the pathogenesis of VOGM and possibly other more common arteriovenous malformation subtypes, and pave the way for advances in the diagnosis and treatment of patients with VOGM.

Full access

David L. Penn, Arianna B. Lanpher, Jennifer M. Klein, Harry P. W. Kozakewich, Kristopher T. Kahle, Edward R. Smith, and Darren B. Orbach

The most common primary cardiac tumor is myxoma, typically originating in the left atrium. Emboli to the central nervous system can cause cerebral infarction or, rarely, seed tumor growth within vessel walls, causing myxomatous aneurysms. Fewer than 60 myxomatous aneurysms have been reported, including 2 cases in children. Here, the authors describe 2 different growing myxomatous aneurysms in a child successfully managed using a combined multidisciplinary approach. A 12-year-old boy developed a sudden headache, diplopia, gait instability, and speech difficulty. Magnetic resonance imaging revealed a left parietal hemorrhage and multifocal cerebral infarction, suspicious for an embolic etiology. A cardiac myxoma was identified in the left atrium and resected. Follow-up cranial vasculature imaging demonstrated multiple intracranial myxomatous aneurysms. These lesions were followed up, and serial imaging identified marked growth of 2 of them (right occipital and left parietal), prompting invasive intervention. The deep occipital lesion was better suited to endovascular treatment, while the superficial parietal lesion was amenable to resection. The patient underwent embolization of an enlarging fusiform aneurysm of the distal right posterior cerebral artery, followed by a left parietal craniotomy for a lesion of the distal left middle cerebral artery. Both procedures were performed without complications and achieved successful obliteration of the lesions, as confirmed by catheter angiography at the 30-month follow-up. To the authors’ knowledge, this report illustrates the first combined endovascular and open surgical treatment of 2 myxomatous aneurysms in a single patient. While acknowledging the rarity of this condition, this report illustrates the clinical manifestations and treatment challenges posed by myxoma and details a successful strategy that could be employed in similar scenarios.

Free access

Bradley A. Gross, Rose Du, Darren B. Orbach, R. Michael Scott, and Edward R. Smith

OBJECT

Cerebral cavernous malformations (CMs) are a source of neurological morbidity from seizures and focal neurological deficits due to mass effect and hemorrhage. Although several natural history reports exist for adults with CMs, similar data for pediatric patients are limited.

METHODS

The authors reviewed hospital databases to identify children with CMs who had not been treated surgically and who had clinical and radiological follow-up. Annual hemorrhage rates were calculated in lesion-years, and risk factors were assessed using the Cox proportional hazards model.

RESULTS

In a cohort of 167 patients with 222 CMs, the mean patient age at the time of diagnosis was 10.1 years old (SD 6.0). Ninety patients (54%) were male. One hundred four patients (62%) presented with hemorrhage from at least 1 CM, 58 (35%) with seizures with or without CM hemorrhage, and 43 (26%) with incidental lesions. Twenty-five patients (15%) had multiple CMs, 17 (10%) had a family history of CMs, and 33 (20%) had radiologically apparent developmental venous anomalies (DVAs). The overall annual hemorrhage rate was 3.3%. Permanent neurological morbidity was 29% per hemorrhage, increasing to 45% for brainstem, thalamic, or basal ganglia CM and decreasing to 15% for supratentorial lobar or cerebellar lesions. The annual hemorrhage rate for incidental CMs was 0.5%; for hemorrhagic CMs, it was 11.3%, increasing to 18.2% within the first 3 years. Hemorrhage clustering within 3 years was statistically significant (HR 6.1, 95% CI 1.72–21.7, p = 0.005). On multivariate analysis, hemorrhagic presentation (HR 4.63, 95% CI 1.53–14.1, p = 0.007), brainstem location (HR 4.42, 95% CI 1.57–12.4, p = 0.005), and an associated radiologically apparent DVA (HR 2.91, 95% CI 1.04–8.09, p = 0.04) emerged as significant risk factors for hemorrhage, whereas age, sex, CM multiplicity, and CM family history did not.

CONCLUSIONS

Prior hemorrhage, brainstem location, and associated DVAs are significant risk factors for symptomatic hemorrhage in children with CMs. Hemorrhage clustering within the first 3 years of a bleed can occur, a potentially important factor in patient management and counseling.