Browse

You are looking at 1 - 2 of 2 items for

  • Refine by Access: all x
  • By Author: Liu, Shanshan x
Clear All
Restricted access

Hua Zhou, Shanshan Liu, Zhehuang Li, Xiaoguang Liu, Lei Dang, Yan Li, Zihe Li, Panpan Hu, Ben Wang, Feng Wei, and Zhongjun Liu

OBJECTIVE

A 3D-printed vertebral prosthesis can be used to reconstruct a bone defect more precisely because of its tailored shape, with its innermost porous structure inducing bone ingrowth. The aim of this study was to evaluate the clinical outcomes of using a 3D-printed artificial vertebral body for spinal reconstruction after en bloc resection of thoracolumbar tumors.

METHODS

This was a retrospective analysis of 23 consecutive patients who underwent surgical treatment for thoracolumbar tumors at our hospital. En bloc resection was performed in all cases, based on the Weinstein-Boriani-Biagini surgical staging system, and anterior reconstruction was performed using a 3D-printed artificial vertebral body. Prosthesis subsidence, fusion status, and instrumentation-related complications were evaluated. Stability of the anterior reconstruction method was evaluated by CT, and CT Hounsfield unit (HU) values were measured to evaluate fusion status.

RESULTS

The median follow-up was 37 (range 24–58) months. A customized 3D-printed artificial vertebral body was used in 10 patients, with an off-the-shelf 3D-printed artificial vertebral body used in the other 13 patients. The artificial vertebral body was implanted anteriorly in 5 patients and posteriorly in 18 patients. The overall fusion rate was 87.0%. The average prosthesis subsidence at the final follow-up was 1.60 ± 1.79 mm. Instrument failure occurred in 2 patients, both of whom had substantial subsidence (8.47 and 3.69 mm, respectively). At 3 months, 6 months, and 1 year postoperatively, the mean CT HU values within the artificial vertebral body were 1930 ± 294, 1997 ± 336, and 1994 ± 257, respectively, with each of these values being significantly higher than the immediate postoperative value of 1744 ± 321 (p < 0.05).

CONCLUSIONS

The use of a 3D-printed artificial vertebral body for anterior reconstruction after en bloc resection of the thoracolumbar spinal tumor may be a feasible and reliable option. The low incidence of prosthesis subsidence of 3D-printed endoprostheses can provide good stability instantly. Measurement of HU values with CT is a valuable method to evaluate the osseointegration at the bone-metal interface of a 3D-printed vertebral prosthesis.

Free access

Zhuofu Li, Shuai Jiang, Xiongkang Song, Shanshan Liu, Chengxia Wang, Lei Hu, and Weishi Li

OBJECTIVE

The application of robots in the field of pedicle screw placement has achieved great success. However, decompressive laminectomy, a step that is just as critical as pedicle screw placement, does not have a mature robot-assisted system. To address this lack, the authors designed a collaborative spine robot system to assist with laminectomy. In this study, they aimed to investigate the reliability of this novel collaborative spinal robot system and compare it with manual laminectomy (ML).

METHODS

Thirty in vitro porcine lumbar vertebral specimens were obtained as experimental bone specimens. Robot-assisted laminectomy (RAL) was performed on the left side of the lamina (n = 30) and ML was performed on the right side (n = 30). The time required for laminectomy on one side, whether the lamina was penetrated, and the remaining thickness of the lamina were compared between the two groups.

RESULTS

The time required for laminectomy on one side was longer in the RAL group than in the ML group (median 326 seconds [IQR 133 seconds] vs 108.5 seconds [IQR 43 seconds], p < 0.001). In the RAL group, complete lamina penetration occurred twice (6.7%), while in the ML group, it occurred 9 times (30%); the difference was statistically significant (p = 0.045). There was no statistically significant difference in the remaining lamina thickness between the two groups (median 1.035 mm [IQR 0.419 mm] vs 1.084 mm [IQR 0.383 mm], p = 0.842).

CONCLUSIONS

The results of this study confirm the safety of this novel spinal robot system for laminectomy. However, its efficiency requires further improvement.