Browse

You are looking at 1 - 4 of 4 items for

  • Refine by Access: all x
  • By Author: Lehman, Ronald A. x
  • By Author: Buchanan, Ian A. x
  • By Author: Cerpa, Meghan x
Clear All
Restricted access

Scott L. Zuckerman, Hani Chanbour, Fthimnir M. Hassan, Christopher S. Lai, Yong Shen, Nathan J. Lee, Mena G. Kerolus, Alex S. Ha, Ian A. Buchanan, Eric Leung, Meghan Cerpa, Ronald A. Lehman Jr., and Lawrence G. Lenke

OBJECTIVE

When treating patients with adult spinal deformity (ASD), radiographic measurements evaluating coronal alignment above C7 are lacking. The current objectives were to: 1) describe the new orbital–coronal vertical axis (ORB-CVA) line that evaluates coronal alignment from cranium to sacrum, 2) assess correlation with other radiographic variables, 3) evaluate correlations with patient-reported outcomes (PROs), and 4) compare the ORB-CVA with the standard C7-CVA.

METHODS

A retrospective cohort study of patients with ASD from a single institution was undertaken. Traditional C7-CVA measurements were obtained. The ORB-CVA was defined as the distance between the central sacral vertical line and the vertical line from the midpoint between the medial orbital walls. The ORB-CVA was correlated using traditional coronal measurements, including C7-CVA, maximum coronal Cobb angle, pelvic obliquity, leg length discrepancy (LLD), and coronal malalignment (CM), defined as a C7-CVA > 3 cm. Clinical improvement was analyzed as: 1) group means, 2) minimal clinically important difference (MCID), and 3) minimal symptom scale (MSS) (Oswestry Disability Index < 20 or Scoliosis Research Society–22r Instrument [SRS-22r] pain + function domains > 8).

RESULTS

A total of 243 patients underwent ASD surgery, and 175 had a 2-year follow-up. Of the 243 patients, 90 (37%) had preoperative CM. The mean (range) ORB-CVA at each time point was as follows: preoperatively, 2.9 ± 3.1 cm (−14.2 to 25.6 cm); 1 year postoperatively, 2.0 ± 1.6 cm (−12.4 to 6.7 cm); and 2 years postoperatively, 1.8 ± 1.7 cm (−6.0 to 11.1 cm) (p < 0.001 from preoperatively to 1 and 2 years). Preoperative ORB-CVA correlated best with C7-CVA (r = 0.842, p < 0.001), maximum coronal Cobb angle (r = 0.166, p = 0.010), pelvic obliquity (r = 0.293, p < 0.001), and LLD (r = 0.158, p = 0.006). Postoperatively, the ORB-CVA correlated only with C7-CVA (r = 0.629, p < 0.001) and LLD (r = 0.153, p = 0.017). Overall, 155 patients (63.8%) had an ORB-CVA that was ≥ 5 mm different from C7-CVA. The ORB-CVA correlated as well and sometimes better than C7-CVA with SRS-22r subdomains. After multivariate logistic regression, a greater ORB-CVA was associated with increased odds of complication, whereas C7-CVA was not associated with any of the three clinical outcomes (complication, readmission, reoperation). A larger difference between the ORB-CVA and C7-CVA was significantly associated with readmission and reoperation after univariate and multivariate logistic regression analyses. A threshold of ≥ 1.5-cm difference between the preoperative ORB-CVA and C7-CVA was found to be predictive of poorer outcomes.

CONCLUSIONS

The ORB-CVA correlated well with known coronal measurements and PROs. ORB-CVA was independently associated with increased odds of complication, whereas C7-CVA was not associated with any outcomes. A ≥ 1.5-cm difference between the preoperative ORB-CVA and C7-CVA was found to be predictive of poorer outcomes.

Restricted access

Scott L. Zuckerman, Christopher S. Lai, Yong Shen, Meghan Cerpa, Nathan J. Lee, Mena G. Kerolus, Alex S. Ha, Ian A. Buchanan, Eric Leung, Ronald A. Lehman, and Lawrence G. Lenke

OBJECTIVE

This study had 3 objectives: 1) to describe pelvic obliquity (PO) and leg-length discrepancy (LLD) and their relationship with coronal malalignment (CM); 2) to report rates of isolated PO and PO secondary to LLD; and 3) to assess the importance of preoperative PO and LLD in postoperative complications, readmission, reoperation, and patient-reported outcomes.

METHODS

Patients undergoing surgery (≥ 6-level fusions) for adult spinal deformity at a single institution were reviewed. Variables evaluated were as follows: 1) PO, angle between the horizontal plane and a line touching bilateral iliac crests; and 2) LLD, distance from the head to the tibial plafond. Coronal vertical axis (CVA) and sagittal vertical axis measurements were collected, both from C7. The cutoff for CM was CVA > 3 cm. The Oswestry Disability Index (ODI) was collected preoperatively and at 2 years.

RESULTS

Of 242 patients undergoing surgery for adult spinal deformity, 90 (37.0%) had preoperative CM. Patients with preoperative CM had a higher PO (2.8° ± 3.2° vs 2.0° ± 1.7°, p = 0.013), a higher percentage of patients with PO > 3° (35.6% vs 23.5%, p = 0.044), and higher a percentage of patients with LLD > 1 cm (21.1% vs 9.8%, p = 0.014). Whereas preoperative PO was significantly positively correlated with CVA (r = 0.26, p < 0.001) and maximum Cobb angle (r = 0.30, p < 0.001), preoperative LLD was only significantly correlated with CVA (r = 0.14, p = 0.035). A total of 12.2% of patients with CM had significant PO and LLD, defined as follows: PO ≥ 3°; LLD ≥ 1 cm. Postoperatively, preoperative PO was significantly associated with both postoperative CM (OR 1.22, 95% CI 1.05–1.40, p = 0.008) and postoperative CVA (β = 0.14, 95% CI 0.06–0.22, p < 0.001). A higher preoperative PO was independently associated with postoperative complications after multivariate logistic regression (OR 1.24, 95% CI 1.05–1.45, p = 0.010); however, 2-year ODI scores were not. Preoperative LLD had no significant relationship with postoperative CM, CVA, ODI, or complications.

CONCLUSIONS

A PO ≥ 3° or LLD ≥ 1 cm was seen in 44.1% of patients with preoperative CM and in 23.5% of patients with normal coronal alignment. Preoperative PO was significantly associated with preoperative CVA and maximum Cobb angle, whereas preoperative LLD was only associated with preoperative CVA. The direction of PO and LLD showed no consistent pattern with CVA. Preoperative PO was independently associated with complications but not with 2-year ODI scores.

Free access

Scott L. Zuckerman, Christopher S. Lai, Yong Shen, Nathan J. Lee, Mena G. Kerolus, Alex S. Ha, Ian A. Buchanan, Eric Leung, Meghan Cerpa, Ronald A. Lehman, and Lawrence G. Lenke

OBJECTIVE

The authors’ objectives were: 1) to evaluate the incidence and risk factors of iatrogenic coronal malalignment (CM), and 2) to assess the outcomes of patients with all three types of postoperative CM (iatrogenic vs unchanged/worsened vs improved but persistent).

METHODS

A single-institution, retrospective cohort study was performed on adult spinal deformity (ASD) patients who underwent > 6-level fusion from 2015 to 2019. Iatrogenic CM was defined as immediate postoperative C7 coronal vertical axis (CVA) ≥ 3 cm in patients with preoperative CVA < 3 cm. Additional subcategories of postoperative CM were unchanged/worsened CM, which was defined as immediate postoperative CVA within 0.5 cm of or worse than preoperative CVA, and improved but persistent CM, which was defined as immediate postoperative CVA that was at least 0.5 cm better than preoperative CVA but still ≥ 3 cm; both groups included only patients with preoperative CM. Immediate postoperative radiographs were obtained when the patient was discharged from the hospital after surgery. Demographic, radiographic, and operative variables were collected. Outcomes included major complications, readmissions, reoperations, and patient-reported outcomes (PROs). The t-test, Kruskal-Wallis test, and univariate logistic regression were performed for statistical analysis.

RESULTS

In this study, 243 patients were included, and the mean ± SD age was 49.3 ± 18.3 years and the mean number of instrumented levels was 13.5 ± 3.9. The mean preoperative CVA was 2.9 ± 2.7 cm. Of 153/243 patients without preoperative CM (CVA < 3 cm), 13/153 (8.5%) had postoperative iatrogenic CM. In total, 43/243 patients (17.7%) had postoperative CM: iatrogenic CM (13/43 [30.2%]), unchanged/worsened CM (19/43 [44.2%]), and improved but persistent CM (11/43 [25.6%]). Significant risk factors associated with iatrogenic CM were anxiety/depression (OR 3.54, p = 0.04), greater preoperative sagittal vertical axis (SVA) (OR 1.13, p = 0.007), greater preoperative pelvic obliquity (OR 1.41, p = 0.019), lumbosacral fractional (LSF) curve concavity to the same side of the CVA (OR 11.67, p = 0.020), maximum Cobb concavity opposite the CVA (OR 3.85, p = 0.048), and three-column osteotomy (OR 4.34, p = 0.028). In total, 12/13 (92%) iatrogenic CM patients had an LSF curve concavity to the same side as the CVA. Among iatrogenic CM patients, mean pelvic obliquity was 3.1°, 4 (31%) patients had pelvic obliquity > 3°, mean preoperative absolute SVA was 8.0 cm, and 7 (54%) patients had preoperative sagittal malalignment. Patients with iatrogenic CM were more likely to sustain a major complication during the 2-year postoperative period than patients without iatrogenic CM (12% vs 33%, p = 0.046), yet readmission, reoperation, and PROs were similar.

CONCLUSIONS

Postoperative iatrogenic CM occurred in 9% of ASD patients with preoperative normal coronal alignment (CVA < 3 cm). ASD patients who were most at risk for iatrogenic CM included those with preoperative sagittal malalignment, increased pelvic obliquity, LSF curve concavity to the same side as the CVA, and maximum Cobb angle concavity opposite the CVA, as well as those who underwent a three-column osteotomy. Despite sustaining more major complications, iatrogenic CM patients did not have increased risk of readmission, reoperation, or worse PROs.

Free access

Scott L. Zuckerman, Christopher S. Lai, Yong Shen, Nathan J. Lee, Mena G. Kerolus, Alex S. Ha, Ian A. Buchanan, Eric Leung, Meghan Cerpa, Ronald A. Lehman, and Lawrence G. Lenke

OBJECTIVE

The authors’ objectives were: 1) to evaluate the incidence and risk factors of iatrogenic coronal malalignment (CM), and 2) to assess the outcomes of patients with all three types of postoperative CM (iatrogenic vs unchanged/worsened vs improved but persistent).

METHODS

A single-institution, retrospective cohort study was performed on adult spinal deformity (ASD) patients who underwent > 6-level fusion from 2015 to 2019. Iatrogenic CM was defined as immediate postoperative C7 coronal vertical axis (CVA) ≥ 3 cm in patients with preoperative CVA < 3 cm. Additional subcategories of postoperative CM were unchanged/worsened CM, which was defined as immediate postoperative CVA within 0.5 cm of or worse than preoperative CVA, and improved but persistent CM, which was defined as immediate postoperative CVA that was at least 0.5 cm better than preoperative CVA but still ≥ 3 cm; both groups included only patients with preoperative CM. Immediate postoperative radiographs were obtained when the patient was discharged from the hospital after surgery. Demographic, radiographic, and operative variables were collected. Outcomes included major complications, readmissions, reoperations, and patient-reported outcomes (PROs). The t-test, Kruskal-Wallis test, and univariate logistic regression were performed for statistical analysis.

RESULTS

In this study, 243 patients were included, and the mean ± SD age was 49.3 ± 18.3 years and the mean number of instrumented levels was 13.5 ± 3.9. The mean preoperative CVA was 2.9 ± 2.7 cm. Of 153/243 patients without preoperative CM (CVA < 3 cm), 13/153 (8.5%) had postoperative iatrogenic CM. In total, 43/243 patients (17.7%) had postoperative CM: iatrogenic CM (13/43 [30.2%]), unchanged/worsened CM (19/43 [44.2%]), and improved but persistent CM (11/43 [25.6%]). Significant risk factors associated with iatrogenic CM were anxiety/depression (OR 3.54, p = 0.04), greater preoperative sagittal vertical axis (SVA) (OR 1.13, p = 0.007), greater preoperative pelvic obliquity (OR 1.41, p = 0.019), lumbosacral fractional (LSF) curve concavity to the same side of the CVA (OR 11.67, p = 0.020), maximum Cobb concavity opposite the CVA (OR 3.85, p = 0.048), and three-column osteotomy (OR 4.34, p = 0.028). In total, 12/13 (92%) iatrogenic CM patients had an LSF curve concavity to the same side as the CVA. Among iatrogenic CM patients, mean pelvic obliquity was 3.1°, 4 (31%) patients had pelvic obliquity > 3°, mean preoperative absolute SVA was 8.0 cm, and 7 (54%) patients had preoperative sagittal malalignment. Patients with iatrogenic CM were more likely to sustain a major complication during the 2-year postoperative period than patients without iatrogenic CM (12% vs 33%, p = 0.046), yet readmission, reoperation, and PROs were similar.

CONCLUSIONS

Postoperative iatrogenic CM occurred in 9% of ASD patients with preoperative normal coronal alignment (CVA < 3 cm). ASD patients who were most at risk for iatrogenic CM included those with preoperative sagittal malalignment, increased pelvic obliquity, LSF curve concavity to the same side as the CVA, and maximum Cobb angle concavity opposite the CVA, as well as those who underwent a three-column osteotomy. Despite sustaining more major complications, iatrogenic CM patients did not have increased risk of readmission, reoperation, or worse PROs.