Browse

You are looking at 1 - 10 of 89 items for

  • Refine by Access: all x
  • By Author: Lafage, Virginie x
Clear All
Restricted access

Ferran Pellisé, Miquel Serra-Burriel, Alba Vila-Casademunt, Jeffrey L. Gum, Ibrahim Obeid, Justin S. Smith, Frank S. Kleinstück, Shay Bess, Javier Pizones, Virginie Lafage, Francisco Javier S. Pérez-Grueso, Frank J. Schwab, Douglas C. Burton, Eric O. Klineberg, Christopher I. Shaffrey, Ahmet Alanay, Christopher P. Ames, and on behalf of the International Spine Study Group (ISSG) and European Spine Study Group (ESSG)

OBJECTIVE

The reported rate of complications and cost of adult spinal deformity (ASD) surgery, associated with an exponential increase in the number of surgeries, cause alarm among healthcare payers and providers worldwide. The authors conjointly analyzed the largest prospective available ASD data sets to define trends in quality-of-care indicators (complications, reinterventions, and health-related quality of life [HRQOL] outcomes) since 2010.

METHODS

This is an observational prospective longitudinal cohort study. Patients underwent surgery between January 2010 and December 2016, with > 2 years of follow-up data. Demographic, surgical, radiological, and HRQOL (i.e., Oswestry Disability Index, SF-36, Scoliosis Research Society-22r) data obtained preoperatively and at 3, 6, 12, and 24 months after surgery were evaluated. Trends and changes in indicators were analyzed using local regression (i.e., locally estimated scatterplot smoothing [LOESS]) and adjusted odds ratio (OR).

RESULTS

Of the 2286 patients included in the 2 registries, 1520 underwent surgery between 2010 and 2016. A total of 1151 (75.7%) patients who were treated surgically at 23 centers in 5 countries met inclusion criteria. Patient recruitment increased progressively (2010–2011 vs 2015–2016: OR 1.64, p < 0.01), whereas baseline clinical characteristics (age, American Society of Anesthesiologists class, HRQOL scores, sagittal deformity) did not change. Since 2010 there has been a sustained reduction in major and minor postoperative complications observed at 90 days (major: OR 0.59; minor: OR 0.65; p < 0.01); at 1 year (major: OR 0.52; minor: 0.75; p < 0.01); and at 2 years of follow-up (major: OR 0.4; minor: 0.80; p < 0.01) as well as in the 2-year reintervention rate (OR 0.41, p < 0.01). Simultaneously, there has been a slight improvement in the correction of sagittal deformity (i.e., pelvic incidence–lumbar lordosis mismatch: OR 1.11, p = 0.19) and a greater gain in quality of life (i.e., Oswestry Disability Index 26% vs 40%, p = 0.02; Scoliosis Research Society-22r, self-image domain OR 1.16, p = 0.13), and these are associated with a progressive reduction of surgical aggressiveness (number of fused segments: OR 0.81, p < 0.01; percent pelvic fixation: OR 0.66, p < 0.01; percent 3-column osteotomies: OR 0.63, p < 0.01).

CONCLUSIONS

The best available data show a robust global improvement in quality metrics in ASD surgery over the last decade. Surgical complications and reoperations have been reduced by half, while improvement in disability increased and correction rates were maintained, in patients with similar baseline characteristics.

Restricted access

Dean Chou, Virginie Lafage, Alvin Y. Chan, Peter Passias, Gregory M. Mundis Jr., Robert K. Eastlack, Kai-Ming Fu, Richard G. Fessler, Munish C. Gupta, Khoi D. Than, Neel Anand, Juan S. Uribe, Adam S. Kanter, David O. Okonkwo, Shay Bess, Christopher I. Shaffrey, Han Jo Kim, Justin S. Smith, Daniel M. Sciubba, Paul Park, Praveen V. Mummaneni, and the International Spine Study Group (ISSG)

OBJECTIVE

Circumferential minimally invasive spine surgery (cMIS) for adult scoliosis has become more advanced and powerful, but direct comparison with traditional open correction using prospectively collected data is limited. The authors performed a retrospective review of prospectively collected, multicenter adult spinal deformity data. The authors directly compared cMIS for adult scoliosis with open correction in propensity-matched cohorts using health-related quality-of-life (HRQOL) measures and surgical parameters.

METHODS

Data from a prospective, multicenter adult spinal deformity database were retrospectively reviewed. Inclusion criteria were age > 18 years, minimum 1-year follow-up, and one of the following characteristics: pelvic tilt (PT) > 25°, pelvic incidence minus lumbar lordosis (PI-LL) > 10°, Cobb angle > 20°, or sagittal vertical axis (SVA) > 5 cm. Patients were categorized as undergoing cMIS (percutaneous screws with minimally invasive anterior interbody fusion) or open correction (traditional open deformity correction). Propensity matching was used to create two equal groups and to control for age, BMI, preoperative PI-LL, pelvic incidence (PI), T1 pelvic angle (T1PA), SVA, PT, and number of posterior levels fused.

RESULTS

A total of 154 patients (77 underwent open procedures and 77 underwent cMIS) were included after matching for age, BMI, PI-LL (mean 15° vs 17°, respectively), PI (54° vs 54°), T1PA (21° vs 22°), and mean number of levels fused (6.3 vs 6). Patients who underwent three-column osteotomy were excluded. Follow-up was 1 year for all patients. Postoperative Oswestry Disability Index (ODI) (p = 0.50), Scoliosis Research Society–total (p = 0.45), and EQ-5D (p = 0.33) scores were not different between cMIS and open patients. Maximum Cobb angles were similar for open and cMIS patients at baseline (25.9° vs 26.3°, p = 0.85) and at 1 year postoperation (15.0° vs 17.5°, p = 0.17). In total, 58.3% of open patients and 64.4% of cMIS patients (p = 0.31) reached the minimal clinically important difference (MCID) in ODI at 1 year. At 1 year, no differences were observed in terms of PI-LL (p = 0.71), SVA (p = 0.46), PT (p = 0.9), or Cobb angle (p = 0.20). Open patients had greater estimated blood loss compared with cMIS patients (1.36 L vs 0.524 L, p < 0.05) and fewer levels of interbody fusion (1.87 vs 3.46, p < 0.05), but shorter operative times (356 minutes vs 452 minutes, p = 0.003). Revision surgery rates between the two cohorts were similar (p = 0.97).

CONCLUSIONS

When cMIS was compared with open adult scoliosis correction with propensity matching, HRQOL improvement, spinopelvic parameters, revision surgery rates, and proportions of patients who reached MCID were similar between cohorts. However, well-selected cMIS patients had less blood loss, comparable results, and longer operative times in comparison with open patients.

Restricted access

Francis Lovecchio, Jonathan Charles Elysee, Renaud Lafage, Jeff Varghese, Mathieu Bannwarth, Frank Schwab, Virginie Lafage, and Han Jo Kim

OBJECTIVE

Preoperative planning for adult spinal deformity (ASD) surgery is essential to prepare the surgical team and consistently obtain postoperative alignment goals. Positional imaging may allow the surgeon to evaluate spinal flexibility and anticipate the need for more invasive techniques. The purpose of this study was to determine whether spine flexibility, defined by the change in alignment between supine and standing imaging, is associated with the need for an osteotomy in ASD surgery.

METHODS

A single-center, dual-surgeon retrospective analysis was performed of adult patients with ASD who underwent correction of a thoracolumbar deformity between 2014 and 2018 (pelvis to upper instrumented vertebra between L1 and T9). Patients were stratified into osteotomy (Ost) and no-osteotomy (NOst) cohorts according to whether an osteotomy was performed (Schwab grade 2 or higher). Demographic, surgical, and radiographic parameters were compared. The sagittal correction from intraoperative prone positioning alone (sagittal flexibility percentage [Sflex%]) was assessed by comparing the change in lumbar lordosis (LL) between preoperative supine to standing radiographs and preoperative to postoperative alignment.

RESULTS

Demographics and preoperative and postoperative sagittal alignment were similar between the Ost (n = 60, 65.9%) and NOst (n = 31, 34.1%) cohorts (p > 0.05). Of all Ost patients, 71.7% had a grade 2 osteotomy (mean 3 per patient), 21.7% had a grade 3 osteotomy, and 12.5% underwent both grade 3 and grade 2 osteotomies. Postoperatively, the NOst and Ost cohorts had similar pelvic incidence minus lumbar lordosis (PI-LL) mismatch (mean PI-LL 5.2° vs 1.2°; p = 0.205). Correction obtained through positioning (Sflex%) was significantly lower for in the osteotomy cohort (38.0% vs 76.3%, p = 0.004). A threshold of Sflex% < 70% predicted the need for osteotomy at a sensitivity of 78%, specificity of 56%, and positive predictive value of 77%.

CONCLUSIONS

The flexibility of the spine is quantitatively related to the use of an osteotomy. Prospective studies are needed to determine thresholds that may be used to standardize surgical decision-making in ASD surgery.

Restricted access

Hai V. Le, Joseph B. Wick, Renaud Lafage, Gregory M. Mundis Jr., Robert K. Eastlack, Shay Bess, Douglas C. Burton, Christopher P. Ames, Justin S. Smith, Peter G. Passias, Munish C. Gupta, Virginie Lafage, Eric O. Klineberg, and the International Spine Study Group

OBJECTIVE

The authors’ objective was to determine whether preoperative lateral extension cervical spine radiography can be used to predict osteotomy type and postoperative alignment parameters after cervical spine deformity surgery.

METHODS

A total of 106 patients with cervical spine deformity were reviewed. Radiographic parameters on preoperative cervical neutral and extension lateral radiography were compared with 3-month postoperative radiographic alignment parameters. The parameters included T1 slope, C2 slope, C2–7 cervical lordosis, cervical sagittal vertical axis, and T1 slope minus cervical lordosis. Associations of radiographic parameters with osteotomy type and surgical approach were also assessed.

RESULTS

On extension lateral radiography, patients who underwent lower grade osteotomy had significantly lower T1 slope, T1 slope minus cervical lordosis, cervical sagittal vertical axis, and C2 slope. Patients who achieved more normal parameters on extension lateral radiography were more likely to undergo surgery via an anterior approach. Although baseline parameters were significantly different between neutral lateral and extension lateral radiographs, 3-month postoperative lateral and preoperative extension lateral radiographs were statistically similar for T1 slope minus cervical lordosis and C2 slope.

CONCLUSIONS

Radiographic parameters on preoperative extension lateral radiography were significantly associated with surgical approach and osteotomy grade and were similar to those on 3-month postoperative lateral radiography. These results demonstrated that extension lateral radiography is useful for preoperative planning and predicting postoperative alignment.

Restricted access

Thomas J. Buell, Christopher I. Shaffrey, Han Jo Kim, Eric O. Klineberg, Virginie Lafage, Renaud Lafage, Themistocles S. Protopsaltis, Peter G. Passias, Gregory M. Mundis Jr., Robert K. Eastlack, Vedat Deviren, Michael P. Kelly, Alan H. Daniels, Jeffrey L. Gum, Alex Soroceanu, D. Kojo Hamilton, Munish C. Gupta, Douglas C. Burton, Richard A. Hostin, Khaled M. Kebaish, Robert A. Hart, Frank J. Schwab, Shay Bess, Christopher P. Ames, Justin S. Smith, and The International Spine Study Group (ISSG)

OBJECTIVE

Deterioration of global coronal alignment (GCA) may be associated with worse outcomes after adult spinal deformity (ASD) surgery. The impact of fusion length and upper instrumented vertebra (UIV) selection on patients with this complication is unclear. The authors’ objective was to compare outcomes between long sacropelvic fusion with upper-thoracic (UT) UIV and those with lower-thoracic (LT) UIV in patients with worsening GCA ≥ 1 cm.

METHODS

This was a retrospective analysis of a prospective multicenter database of consecutive ASD patients. Index operations involved instrumented fusion from sacropelvis to thoracic spine. Global coronal deterioration was defined as worsening GCA ≥ 1 cm from preoperation to 2-year follow-up.

RESULTS

Of 875 potentially eligible patients, 560 (64%) had complete 2-year follow-up data, of which 144 (25.7%) demonstrated worse GCA at 2-year postoperative follow-up (35.4% of UT patients vs 64.6% of LT patients). At baseline, UT patients were younger (61.6 ± 9.9 vs 64.5 ± 8.6 years, p = 0.008), a greater percentage of UT patients had osteoporosis (35.3% vs 16.1%, p = 0.009), and UT patients had worse scoliosis (51.9° ± 22.5° vs 32.5° ± 16.3°, p < 0.001). Index operations were comparable, except UT patients had longer fusions (16.4 ± 0.9 vs 9.7 ± 1.2 levels, p < 0.001) and operative duration (8.6 ± 3.2 vs 7.6 ± 3.0 hours, p = 0.023). At 2-year follow-up, global coronal deterioration averaged 2.7 ± 1.4 cm (1.9 to 4.6 cm, p < 0.001), scoliosis improved (39.3° ± 20.8° to 18.0° ± 14.8°, p < 0.001), and sagittal spinopelvic alignment improved significantly in all patients. UT patients maintained smaller positive C7 sagittal vertical axis (2.7 ± 5.7 vs 4.7 ± 5.7 cm, p = 0.014). Postoperative 2-year health-related quality of life (HRQL) significantly improved from baseline for all patients. HRQL comparisons demonstrated that UT patients had worse Scoliosis Research Society–22r (SRS-22r) Activity (3.2 ± 1.0 vs 3.6 ± 0.8, p = 0.040) and SRS-22r Satisfaction (3.9 ± 1.1 vs 4.3 ± 0.8, p = 0.021) scores. Also, fewer UT patients improved by ≥ 1 minimal clinically important difference in numerical rating scale scores for leg pain (41.3% vs 62.7%, p = 0.020). Comparable percentages of UT and LT patients had complications (208 total, including 53 reoperations, 77 major complications, and 78 minor complications), but the percentage of reoperated patients was higher among UT patients (35.3% vs 18.3%, p = 0.023). UT patients had higher reoperation rates of rod fracture (13.7% vs 2.2%, p = 0.006) and pseudarthrosis (7.8% vs 1.1%, p = 0.006) but not proximal junctional kyphosis (9.8% vs 8.6%, p = 0.810).

CONCLUSIONS

In ASD patients with worse 2-year GCA after long sacropelvic fusion, UT UIV was associated with worse 2-year HRQL compared with LT UIV. This may suggest that residual global coronal malalignment is clinically less tolerated in ASD patients with longer fusion to the proximal thoracic spine. These results may inform operative planning and improve patient counseling.

Restricted access

Thomas J. Buell, Christopher I. Shaffrey, Shay Bess, Han Jo Kim, Eric O. Klineberg, Virginie Lafage, Renaud Lafage, Themistocles S. Protopsaltis, Peter G. Passias, Gregory M. Mundis Jr., Robert K. Eastlack, Vedat Deviren, Michael P. Kelly, Alan H. Daniels, Jeffrey L. Gum, Alex Soroceanu, D. Kojo Hamilton, Munish C. Gupta, Douglas C. Burton, Richard A. Hostin, Khaled M. Kebaish, Robert A. Hart, Frank J. Schwab, Christopher P. Ames, Justin S. Smith, and the International Spine Study Group

OBJECTIVE

Few studies have compared fractional curve correction after long fusion between transforaminal lumbar interbody fusion (TLIF) and anterior lumbar interbody fusion (ALIF) for adult symptomatic thoracolumbar/lumbar scoliosis (ASLS). The objective of this study was to compare fractional correction, health-related quality of life (HRQL), and complications associated with L4–S1 TLIF versus those of ALIF as an operative treatment of ASLS.

METHODS

The authors retrospectively analyzed a prospective multicenter adult spinal deformity database. Inclusion required a fractional curve ≥ 10°, a thoracolumbar/lumbar curve ≥ 30°, index TLIF or ALIF performed at L4–5 and/or L5–S1, and a minimum 2-year follow-up. TLIF and ALIF patients were propensity matched according to the number and type of interbody fusion at L4–S1.

RESULTS

Of 135 potentially eligible consecutive patients, 106 (78.5%) achieved the minimum 2-year follow-up (mean ± SD age 60.6 ± 9.3 years, 85% women, 44.3% underwent TLIF, and 55.7% underwent ALIF). Index operations had mean ± SD 12.2 ± 3.6 posterior levels, 86.6% of patients underwent iliac fixation, 67.0% underwent TLIF/ALIF at L4–5, and 84.0% underwent TLIF/ALIF at L5–S1. Compared with TLIF patients, ALIF patients had greater cage height (10.9 ± 2.1 mm for TLIF patients vs 14.5 ± 3.0 mm for ALIF patients, p = 0.001) and lordosis (6.3° ± 1.6° for TLIF patients vs 17.0° ± 9.9° for ALIF patients, p = 0.001) and longer operative duration (6.7 ± 1.5 hours for TLIF patients vs 8.9 ± 2.5 hours for ALIF patients, p < 0.001). In all patients, final alignment improved significantly in terms of the fractional curve (20.2° ± 7.0° to 6.9° ± 5.2°), maximum coronal Cobb angle (55.0° ± 14.8° to 23.9° ± 14.3°), C7 sagittal vertical axis (5.1 ± 6.2 cm to 2.3 ± 5.4 cm), pelvic tilt (24.6° ± 8.1° to 22.7° ± 9.5°), and lumbar lordosis (32.3° ± 18.8° to 51.4° ± 14.1°) (all p < 0.05). Matched analysis demonstrated comparable fractional correction (−13.6° ± 6.7° for TLIF patients vs −13.6° ± 8.1° for ALIF patients, p = 0.982). In all patients, final HRQL improved significantly in terms of Oswestry Disability Index (ODI) score (42.4 ± 16.3 to 24.2 ± 19.9), physical component summary (PCS) score of the 36-item Short-Form Health Survey (32.6 ± 9.3 to 41.3 ± 11.7), and Scoliosis Research Society–22r score (2.9 ± 0.6 to 3.7 ± 0.7) (all p < 0.05). Matched analysis demonstrated worse ODI (30.9 ± 21.1 for TLIF patients vs 17.9 ± 17.1 for ALIF patients, p = 0.017) and PCS (38.3 ± 12.0 for TLIF patients vs 45.3 ± 10.1 for ALIF patients, p = 0.020) scores for TLIF patients at the last follow-up (despite no differences in these parameters at baseline). The rates of total complications were similar (76.6% for TLIF patients vs 71.2% for ALIF patients, p = 0.530), but significantly more TLIF patients had rod fracture (28.6% of TLIF patients vs 7.1% of ALIF patients, p = 0.036). Multiple regression analysis demonstrated that a 1-mm increase in L4–5 TLIF cage height led to a 2.2° reduction in L4 coronal tilt (p = 0.011), and a 1° increase in L5–S1 ALIF cage lordosis led to a 0.4° increase in L5–S1 segmental lordosis (p = 0.045).

CONCLUSIONS

Operative treatment of ASLS with L4–S1 TLIF versus ALIF demonstrated comparable mean fractional curve correction (66.7% vs 64.8%), despite use of significantly larger, more lordotic ALIF cages. TLIF cage height had a significant impact on leveling L4 coronal tilt, whereas ALIF cage lordosis had a significant impact on restoration of lumbosacral lordosis. The advantages of TLIF may include reduced operative duration and hospitalization; however, associated HRQL was inferior and more rod fractures were detected in the TLIF patients included in this study.

Free access

Mathieu Bannwarth, Justin S. Smith, Shay Bess, Eric O. Klineberg, Christopher P. Ames, Gregory M. Mundis Jr., Han Jo Kim, Renaud Lafage, Munish C. Gupta, Douglas C. Burton, Christopher I. Shaffrey, Frank J. Schwab, Virginie Lafage, and and the International Spine Study Group (ISSG)

OBJECTIVE

Recombinant human bone morphogenetic protein–2 (rhBMP-2) has been shown to increase fusion rates; however, cost, limited FDA approval, and possible complications impact its use. Decisions regarding rhBMP-2 use and changes over time have not been well defined. In this study, the authors aimed to assess changes in rhBMP-2 use for adult spinal deformity (ASD) surgery over the past decade.

METHODS

A retrospective review of the International Spine Study Group prospective multicenter database was performed to identify ASD patients treated surgically from 2008 to 2018. For assessment of rhBMP-2 use over time, 3 periods were created: 2008–2011, 2012–2015, and 2016–2018.

RESULTS

Of the patients identified, 1180 met inclusion criteria, with a mean age 60 years and 30% of patients requiring revision surgery; rhBMP-2 was used in 73.9% of patients overall. The mean rhBMP-2 dose per patient was 23.6 mg. Patients receiving rhBMP-2 were older (61 vs 58 years, p < 0.001) and had more comorbidities (Charlson Comorbidity Index 1.9 vs 1.4, p < 0.001), a higher rate of the Scoliosis Research Society–Schwab pelvic tilt modifier (> 0; 68% vs 62%, p = 0.026), a greater deformity correction (change in pelvic incidence minus lumbar lordosis 15° vs 12°, p = 0.01), and more levels fused (8.9 vs 7.9, p = 0.003). Over the 3 time periods, the overall rate of rhBMP-2 use increased and then stabilized (62.5% vs 79% vs 77%). Stratified analysis showed that after an overall increase in rhBMP-2 use, only patients who were younger than 50 years, those who were smokers, those who received a three-column osteotomy (3CO), and patients who underwent revision sustained an increased rate of rhBMP-2 use between the later two periods. No similar increases were noted for older patients, nonsmokers, primary surgery patients, and patients without a 3CO. The total rhBMP-2 dose decreased over time (26.6 mg vs 24.8 mg vs 20.7 mg, p < 0.001). After matching patients by preoperative alignment, 215 patients were included, and a significantly lower rate of complications leading to revision surgery was observed within the 2012–2015 period compared with the 2008–2011 (21.4% vs 13.0%, p = 0.029) period, while rhBMP-2 was increasingly used (80.5% vs 66.0%, p = 0.001). There was a trend toward a lower rate of pseudarthrosis for patients in the 2012–2015 period, but this difference did not reach statistical significance (7% vs 4.2%, p = 0.283).

CONCLUSIONS

The authors found that rhBMP-2 was used in the majority of ASD patients and was more commonly used in those with greater deformity correction. Additionally, over the last 10 years, rhBMP-2 was increasingly used for ASD patients, but the dose has decreased.

Restricted access

Francis Lovecchio, Renaud Lafage, Jonathan Charles Elysee, Alex Huang, Bryan Ang, Mathieu Bannwarth, Han Jo Kim, Frank Schwab, and Virginie Lafage

OBJECTIVE

Supine radiographs have successfully been used for preoperative planning of lumbar deformity corrections. However, they have not been used to assess thoracic flexibility, which has recently garnered attention as a potential contributor to proximal junctional kyphosis (PJK). The purpose of this study was to compare supine to standing radiographs to assess thoracic flexibility and to determine whether thoracic flexibility is associated with PJK.

METHODS

A retrospective study was conducted of a single-institution database of patients with adult spinal deformity (ASD). Sagittal alignment parameters were compared between standing and supine and between pre- and postoperative radiographs. Thoracic flexibility was determined as the change between preoperative standing thoracic kyphosis (TK) and preoperative supine TK, and these changes were measured over the overall thoracic spine and the fused portion of the thoracic spine (i.e., TK fused). A case-control analysis was performed to compare thoracic flexibility between patients with PJK and those without (no PJK). The cohort was also stratified into three groups based on thoracic flexibility: kyphotic change (increased TK), lordotic change (decreased TK), and no change. The PJK rate was compared between the cohorts.

RESULTS

A total of 101 patients (mean 63 years old, 82.2% female, mean BMI 27.4 kg/m2) were included. Preoperative Scoliosis Research Society–Schwab ASD classification showed moderate preoperative deformity (pelvic tilt 27.7% [score ++]; pelvic incidence–lumbar lordosis mismatch 44.6% [score ++]; sagittal vertical axis 42.6% [score ++]). Postoperatively, the average offset from age-adjusted alignment goals demonstrated slight overcorrection in the study sample (−8.5° ± 15.6° pelvic incidence–lumbar lordosis mismatch, −29.2 ± 53.1 mm sagittal vertical axis, −5.4 ± 10.8 pelvic tilt, and −7.6 ± 11.7 T1 pelvic angle). TK decreased between standing and supine radiographs and increased postoperatively (TK fused: −25.3° vs −19.6° vs −29.9°; all p < 0.001). The overall rate of radiographic PJK was 23.8%. Comparisons between PJK and no PJK demonstrated that offsets from age-adjusted alignment goals were similar (p > 0.05 for all). There was a significant difference in the PJK rate when stratified by thoracic flexibility cohorts (kyphotic: 0.0% vs no change: 18.4% vs lordotic: 35.0%; p = 0.049). Logistic regression revealed thoracic flexibility (p = 0.045) as the only independent correlate of PJK.

CONCLUSIONS

Half of patients with ASD experienced significant changes in TK during supine positioning, a quality that may influence surgical strategy. Increased thoracic flexibility is associated with PJK, possibly secondary to fusing the patient’s spine in a flattened position intraoperatively.

Restricted access

Justin S. Smith, Michael P. Kelly, Elizabeth L. Yanik, Christine R. Baldus, Thomas J. Buell, Jon D. Lurie, Charles Edwards, Steven D. Glassman, Lawrence G. Lenke, Oheneba Boachie-Adjei, Jacob M. Buchowski, Leah Y. Carreon, Charles H. Crawford III, Thomas J. Errico, Stephen J. Lewis, Tyler Koski, Stefan Parent, Virginie Lafage, Han Jo Kim, Christopher P. Ames, Shay Bess, Frank J. Schwab, Christopher I Shaffrey, and Keith H Bridwell

OBJECTIVE

Although short-term adult symptomatic lumbar scoliosis (ASLS) studies favor operative over nonoperative treatment, longer outcomes are critical for assessment of treatment durability, especially for operative treatment, because the majority of implant failures and nonunions present between 2 and 5 years after surgery. The objectives of this study were to assess the durability of treatment outcomes for operative versus nonoperative treatment of ASLS, to report the rates and types of associated serious adverse events (SAEs), and to determine the potential impact of treatment-related SAEs on outcomes.

METHODS

The ASLS-1 (Adult Symptomatic Lumbar Scoliosis–1) trial is an NIH-sponsored multicenter prospective study to assess operative versus nonoperative ASLS treatment. Patients were 40–80 years of age and had ASLS (Cobb angle ≥ 30° and Oswestry Disability Index [ODI] ≥ 20 or Scoliosis Research Society [SRS]–22 subscore ≤ 4.0 in the Pain, Function, and/or Self-Image domains). Patients receiving operative and nonoperative treatment were compared using as-treated analysis, and the impact of related SAEs was assessed. Primary outcome measures were ODI and SRS-22.

RESULTS

The 286 patients with ASLS (107 with nonoperative treatment, 179 with operative treatment) had 2-year and 5-year follow-up rates of 90% (n = 256) and 74% (n = 211), respectively. At 5 years, compared with patients treated nonoperatively, those who underwent surgery had greater improvement in ODI (mean difference −15.2 [95% CI −18.7 to −11.7]) and SRS-22 subscore (mean difference 0.63 [95% CI 0.48–0.78]) (p < 0.001), with treatment effects (TEs) exceeding the minimum detectable measurement difference (MDMD) for ODI (7) and SRS-22 subscore (0.4). TEs at 5 years remained as favorable as 2-year TEs (ODI −13.9, SRS-22 0.52). For patients in the operative group, the incidence rates of treatment-related SAEs during the first 2 years and 2–5 years after surgery were 22.38 and 8.17 per 100 person-years, respectively. At 5 years, patients in the operative group who had 1 treatment-related SAE still had significantly greater improvement, with TEs (ODI −12.2, SRS-22 0.53; p < 0.001) exceeding the MDMD. Twelve patients who received surgery and who had 2 or more treatment-related SAEs had greater improvement than nonsurgically treated patients based on ODI (TE −8.34, p = 0.017) and SRS-22 (TE 0.32, p = 0.029), but the SRS-22 TE did not exceed the MDMD.

CONCLUSIONS

The significantly greater improvement of operative versus nonoperative treatment for ASLS at 2 years was durably maintained at the 5-year follow-up. Patients in the operative cohort with a treatment-related SAE still had greater improvement than patients in the nonoperative cohort. These findings have important implications for patient counseling and future cost-effectiveness assessments.

Restricted access

Peter G. Passias, Haddy Alas, Shay Bess, Breton G. Line, Virginie Lafage, Renaud Lafage, Christopher P. Ames, Douglas C. Burton, Avery Brown, Cole Bortz, Katherine Pierce, Waleed Ahmad, Sara Naessig, Michael P. Kelly, Richard Hostin, Khaled M. Kebaish, Khoi D. Than, Pierce Nunley, Christopher I. Shaffrey, Eric O. Klineberg, Justin S. Smith, Frank J. Schwab, and the International Spine Study Group

OBJECTIVE

Patients with nonoperative (N-Op) adult spinal deformity (ASD) have inferior long-term spinopelvic alignment and clinical outcomes. Predictors of lower quality-of-life measures in N-Op populations have yet to be sufficiently investigated. The aim of this study was to identify patient-related factors and radiographic parameters associated with inferior health-related quality-of-life (HRQOL) scores in N-Op ASD patients.

METHODS

N-Op ASD patients with complete radiographic and outcome data at baseline and 2 years were included. N-Op patients and operative (Op) patients were propensity score matched for baseline disability and deformity. Patient-related factors and radiographic alignment parameters (pelvic tilt [PT], sagittal vertical axis [SVA], pelvic incidence [PI]–lumbar lordosis [LL] mismatch, mismatch between cervical lordosis and T1 segment slope [TS-CL], cervical-thoracic pelvic angle [PA], and others) at baseline and 2 years were analyzed as predictors for moderate to severe 2-year Oswestry Disability Index (ODI > 20) and failing to meet the minimal clinically importance difference (MCID) for 2-year Scoliosis Research Society Outcomes Questionnaire (SRS) scores (< 0.4 increase from baseline). Conditional inference decision trees identified predictors of each HRQOL measure and established cutoffs at which factors have a global effect. Random forest analysis (RFA) generated 5000 conditional inference trees to compute a variable importance table for top predictors of inferior HRQOL. Statistical significance was set at p < 0.05.

RESULTS

Six hundred sixty-two patients with ASD (331 Op patients and 331 N-Op patients) with complete radiographic and HRQOL data at their 2-year follow-up were included. There were no differences in demographics, ODI, and Schwab deformity modifiers between groups at baseline (all p > 0.05). N-Op patients had higher 2-year ODI scores (27.9 vs 20.3, p < 0.001), higher rates of moderate to severe disability (29.3% vs 22.4%, p = 0.05), lower SRS total scores (3.47 vs 3.91, p < 0.001), and higher rates of failure to reach SRS MCID (35.3% vs 15.7%, p < 0.001) than Op patients at 2 years. RFA ranked the top overall predictors for moderate to severe ODI at 2 years for N-Op patients as follows: 1) frailty index > 2.8, 2) BMI > 35 kg/m, T4PA > 28°, and 4) Charlson Comorbidity Index > 1. Top radiographic predictors were T4PA > 28° and C2–S1 SVA > 93 mm. RFA also ranked the top overall predictors for failure to reach 2-year SRS MCID for N-Op patients, as follows: 1) T12–S1 lordosis > 53°, 2) cervical SVA (cSVA) > 28 mm, 3) C2–S1 angle > 14.5°, 4) TS-CL > 12°, and 5) PT > 23°. The top radiographic predictors were T12–S1 Cobb angle, cSVA, C2–S1 angle, and TS-CL.

CONCLUSIONS

When controlling for baseline deformity in N-Op versus Op patients, subsequent deterioration in frailty, BMI, and radiographic progression over a 2-year follow-up were found to drive suboptimal patient-reported outcome measures in N-Op cohorts as measured by validated ODI and SRS clinical instruments.