Browse

You are looking at 1 - 2 of 2 items for

  • Refine by Access: all x
  • By Author: Kwan, Aij-Lie x
  • By Author: Kassell, Neal F. x
  • By Author: Caner, Hakan H. x
Clear All
Full access

Barbara Cappelletto, Hakan H. Caner, Frank Schottler, Aij-Lie Kwan, David Eveleth, Patricia L. Foley, Neal F. Kassell, and Kevin S. Lee

Calcium-activated proteolysis mediated by the protease inhibitor, calpain, has recently been implicated in the pathogenesis of cerebral vasospasm. The effect of one inhibitor of calcium-activated proteolysis, z-Leu-Phe-CONH-morpholene (zLF), on cerebrovascular constriction was examined in two experimental paradigms. In the first paradigm, the rabbit basilar artery (BA) was visualized via a transclival exposure, and its diameter was monitored using videomicroscopy. In the second experimental paradigm two intracisternal injections of autologous blood were administered to mimic a subarachnoid hemorrhage (SAH). The BA was visualized via the transclival exposure, and its luminal diameter was measured. Topical application of oxyhemoglobin (OxyHb), a known pathogenic agent in cerebral vasospasm, elicited vasoconstriction in normal animals, reducing arterial diameter to approximately 75% of resting levels. Pretreatment with zLF (100, 200, or 300 μM) attenuated vasoconstriction induced by OxyHb. In an experimental model of SAH, the diameter of the BA was reduced after the first injection of blood to approximately 67% of normal resting levels when measured 3 to 4 days later. This vasospastic response was reversed significantly by topical application of zLF (100 μM); vascular diameter was increased to approximately 84% of normal resting levels.

These findings demonstrate that both acute OxyHb-induced constriction and blood-induced vasospasm are sensitive to an inhibitor of the proteolytic enzyme, calpain. Together, these observations indicate an important role for calcium-activated proteolysis in the development and maintenance of vasospasm after SAH. In addition, it may be inferred from the data that inhibitors of calcium-activated proteolysis may be useful therapeutic agents for treating this form of cerebrovascular disease.

Restricted access

Hakan H. Caner, Aij-Lie Kwan, Adam Arthur, Arco Y. Jeng, Rodney W. Lappe, Neal F. Kassell, and Kevin S. Lee

✓ The potent vasoconstrictor peptide, endothelin-1 (ET-1), has been implicated in the pathophysiology of cerebral vasospasm that occurs after subarachnoid hemorrhage (SAH). This peptide is synthesized as a large prepropeptide that requires a series of modifying steps for its activation. The last of these steps involves the proteolytic conversion of a relatively inactive propeptide, Big ET-1, to its active, 21—amino acid peptide form. The enzyme responsible for converting Big ET-1 to ET-1 is a metalloprotease called endothelin-converting enzyme (ECE). In the present study the authors examined the effects of a newly developed inhibitor of ECE on responses to ET peptides in the normal basilar artery and on pathophysiological constriction in the spastic basilar artery after SAH.

In the first series of experiments the authors examined normal basilar arteries in the rabbit, which were exposed transclivally and measured on-line using videomicroscopy. Intravenous administration or topical application of an active inhibitor of ECE, CGS 26303, blocked vasoconstrictor responses to topically applied Big ET-1 but not to ET-1. In contrast, topical application of a structurally related compound that does not inhibit ECE, CGS 24592, was ineffective in blocking vasoconstriction that was elicited by a topical application of Big ET-1. These findings indicate that CGS 26303 when administered systemically is capable of blocking the conversion of Big ET-1 to ET-1 in the basilar artery without affecting the ability of the vessel to respond to ET-1. In the second series of experiments the authors examined the effects of the ECE inhibitor on cerebral vasospasm after experimental SAH. Intraperitoneal administration of CGS 26303 via osmotic minipumps significantly attenuated the delayed spastic response of the basilar artery to an intracisternal injection of autologous blood.

This study provides the first evidence that systemic administration of an inhibitor of ECE is capable of preventing cerebral vasospasm after SAH. The results reinforce a growing body of evidence that ETs play a critical role in the development of spastic constriction after SAH. Moreover, the findings indicate that blocking the conversion of Big ET-1 to its active ET-1 form using CGS 26303 may represent a feasible strategy for ameliorating cerebral vasospasm.