Browse

You are looking at 1 - 10 of 102 items for

  • Refine by Access: all x
  • By Author: Kestle, John R. W. x
Clear All
Restricted access

Vanessa L. Wall, John R. W. Kestle, John B. Fulton, and Shawn D. Gale

OBJECTIVE

Hydrocephalus can impact all areas of health, including physical, cognitive, and social-emotional functioning. The social-emotional health of children who have had surgery for hydrocephalus is not well characterized. In this study, the authors sought to examine social-emotional functioning using the Behavior Assessment System for Children, Third Edition (BASC-3) and the Hydrocephalus Outcome Questionnaire (HOQ) in 66 children aged 5 to 17 years.

METHODS

Caregivers of pediatric patients with hydrocephalus completed the BASC-3 and the HOQ. BASC-3 internalizing, externalizing, and executive functioning caregiver-reported scores were compared with the BASC-3 normative sample using one-sample t-tests to evaluate overall social-emotional functioning. BASC-3 scores were correlated with the social-emotional domain of the HOQ using Pearson’s r to determine if the HOQ accurately captured the social-emotional functioning of children with hydrocephalus in a neurosurgery setting. BASC-3 and HOQ scores of children with different etiologies of hydrocephalus were compared using the Kruskal-Wallis one-way analysis of variance to determine if differences existed between the following etiologies: intraventricular hemorrhage secondary to prematurity, myelomeningocele, communicating congenital hydrocephalus, aqueductal stenosis, or other.

RESULTS

Children with hydrocephalus of all etiologies had more difficulties with social-emotional functioning compared with normative populations. Children with different hydrocephalus etiologies differed in executive functioning and overall HOQ scores but not in internalizing symptoms, externalizing symptoms, or social-emotional HOQ scores. The social-emotional domain of the HOQ correlated more strongly with the BASC-3 than did the physical and cognitive domains.

CONCLUSIONS

These results have provided evidence that children who have had surgery for hydrocephalus may be at increased risk of social-emotional and behavioral difficulties, but etiology may not be particularly helpful in predicting what kinds or degree of difficulty. The results of this study also support the convergent and divergent validity of the social-emotional domain of the HOQ.

Restricted access

Vijay M. Ravindra, Al-Wala Awad, Cordell M. Baker, Amy Lee, Richard C. E. Anderson, Barbu Gociman, Kamlesh B. Patel, Matthew D. Smyth, Craig Birgfeld, Ian F. Pollack, Jesse A. Goldstein, Thomas Imahiyerobo, Faizi A. Siddiqi, John R. W. Kestle, and for the Synostosis Research Group (SynRG)

OBJECTIVE

The diagnosis of single-suture craniosynostosis can be made by physical examination, but the use of confirmatory imaging is common practice. The authors sought to investigate preoperative imaging use and to describe intracranial findings in children with single-suture synostosis from a large, prospective multicenter cohort.

METHODS

In this study from the Synostosis Research Group, the study population included children with clinically diagnosed single-suture synostosis between March 1, 2017, and October 31, 2020, at 5 institutions. The primary analysis correlated the clinical diagnosis and imaging diagnosis; secondary outcomes included intracranial findings by pathological suture type.

RESULTS

A total of 403 children (67% male) were identified with single-suture synostosis. Sagittal (n = 267), metopic (n = 77), coronal (n = 52), and lambdoid (n = 7) synostoses were reported; the most common presentation was abnormal head shape (97%), followed by a palpable or visible ridge (37%). Preoperative cranial imaging was performed in 90% of children; findings on 97% of these imaging studies matched the initial clinical diagnosis. Thirty-one additional fused sutures were identified in 18 children (5%) that differed from the clinical diagnosis. The most commonly used imaging modality by far was CT (n = 360), followed by radiography (n = 9) and MRI (n = 7). Most preoperative imaging was ordered as part of a protocolized pathway (67%); some images were obtained as a result of a nondiagnostic clinical examination (5.2%). Of the 360 patients who had CT imaging, 150 underwent total cranial vault surgery and 210 underwent strip craniectomy. The imaging findings influenced the surgical treatment 0.95% of the time. Among the 24% of children with additional (nonsynostosis) abnormal findings on CT, only 3.5% required further monitoring.

CONCLUSIONS

The authors found that a clinical diagnosis of single-suture craniosynostosis and the findings on CT were the same with rare exceptions. CT imaging very rarely altered the surgical treatment of children with single-suture synostosis.

Restricted access

Aaron M. Yengo-Kahn, John C. Wellons III, Todd C. Hankinson, Jason S. Hauptman, Eric M. Jackson, Hailey Jensen, Mark D. Krieger, Abhaya V. Kulkarni, David. D. Limbrick Jr., Patrick J. McDonald, Robert P. Naftel, Jonathan A. Pindrik, Ian F. Pollack, Ron Reeder, Jay Riva-Cambrin, Curtis J. Rozzelle, Mandeep S. Tamber, William E. Whitehead, John R. W. Kestle, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Treating Dandy-Walker syndrome–related hydrocephalus (DWSH) involves either a CSF shunt-based or endoscopic third ventriculostomy (ETV)–based procedure. However, comparative investigations are lacking. This study aimed to compare shunt-based and ETV-based treatment strategies utilizing archival data from the Hydrocephalus Clinical Research Network (HCRN) registry.

METHODS

A retrospective review of prospectively collected and maintained data on children with DWSH, available from the HCRN registry (14 sites, 2008–2018), was performed. The primary outcome was revision-free survival of the initial surgical intervention. The primary exposure was either shunt-based (i.e., cystoperitoneal shunt [CPS], ventriculoperitoneal shunt [VPS], and/or dual-compartment) or ETV-based (i.e., ETV alone or with choroid plexus cauterization [CPC]) initial surgical treatment. Primary analysis included multivariable Cox proportional hazards models.

RESULTS

Of 8400 HCRN patients, 151 (1.8%) had DWSH. Among these, the 102 patients who underwent shunt placement (79 VPSs, 16 CPSs, 3 other, and 4 multiple proximal catheter) were younger (6.6 vs 18.8 months, p < 0.001) and more frequently had 1 or more comorbidities (37.3% vs 14.3%, p = 0.005) than the 49 ETV-treated children (28 ETV-CPC). Fifty percent of the shunt-based and 51% of the ETV-based treatments failed. Notably, 100% (4/4) of the dual-compartment shunts failed. Adjusting for age, baseline ventricular size, and comorbidities, ETV-based treatment was not significantly associated with earlier failure compared with shunt-based treatment (HR for failure 1.32, 95% CI 0.77–2.26; p = 0.321). Complication rates were low: 4.9% and 6.1% (p = 0.715) for shunt- and ETV-based procedures, respectively. There was no difference in survival between ETV-CPC– and ETV-based treatment when adjusting for age (HR for failure 0.86, 95% CI 0.29–2.55, p = 0.783).

CONCLUSIONS

In this North American, multicenter, prospective database review, shunt-based and ETV-based primary treatment strategies of DWSH appear similarly durable. Pediatric neurosurgeons can reasonably consider ETV-based initial treatment given the similar durability and the low complication rate. However, given the observational nature of this study, the treating surgeon might need to consider subgroups that were too small for a separate analysis. Very young children with comorbidities were more commonly treated with shunts, and older children with fewer comorbidities were offered ETV-based treatment. Future studies may determine preoperative characteristics associated with ETV treatment success in this population.

Free access

Christopher M. Bonfield, Chevis N. Shannon, Ron W. Reeder, Samuel Browd, James Drake, Jason S. Hauptman, Abhaya V. Kulkarni, David D. Limbrick Jr., Patrick J. McDonald, Robert Naftel, Ian F. Pollack, Jay Riva-Cambrin, Curtis Rozzelle, Mandeep S. Tamber, William E. Whitehead, John R. W. Kestle, John C. Wellons III, and for the Hydrocephalus Clinical Research Network (HCRN)

OBJECTIVE

Hydrocephalus may be seen in patients with multisuture craniosynostosis and, less commonly, single-suture craniosynostosis. The optimal treatment for hydrocephalus in this population is unknown. In this study, the authors aimed to evaluate the success rate of ventriculoperitoneal shunt (VPS) treatment and endoscopic third ventriculostomy (ETV) both with and without choroid plexus cauterization (CPC) in patients with craniosynostosis.

METHODS

Utilizing the Hydrocephalus Clinical Research Network (HCRN) Core Data Project (Registry), the authors identified all patients who underwent treatment for hydrocephalus associated with craniosynostosis. Descriptive statistics, demographics, and surgical outcomes were evaluated.

RESULTS

In total, 42 patients underwent treatment for hydrocephalus associated with craniosynostosis. The median gestational age at birth was 39.0 weeks (IQR 38.0, 40.0); 55% were female and 60% were White. The median age at first craniosynostosis surgery was 0.6 years (IQR 0.3, 1.7), and at the first permanent hydrocephalus surgery it was 1.2 years (IQR 0.5, 2.5). Thirty-three patients (79%) had multiple different sutures fused, and 9 had a single suture: 3 unicoronal (7%), 3 sagittal (7%), 2 lambdoidal (5%), and 1 unknown (2%). Syndromes were identified in 38 patients (90%), with Crouzon syndrome being the most common (n = 16, 42%). Ten patients (28%) received permanent hydrocephalus surgery before the first craniosynostosis surgery. Twenty-eight patients (67%) underwent VPS treatment, with the remaining 14 (33%) undergoing ETV with or without CPC (ETV ± CPC). Within 12 months after initial hydrocephalus intervention, 14 patients (34%) required revision (8 VPS and 6 ETV ± CPC). At the most recent follow-up, 21 patients (50%) required a revision. The revision rate decreased as age increased. The overall infection rate was 5% (VPS 7%, 0% ETV ± CPC).

CONCLUSIONS

This is the largest prospective study reported on children with craniosynostosis and hydrocephalus. Hydrocephalus in children with craniosynostosis most commonly occurs in syndromic patients and multisuture fusion. It is treated at varying ages; however, most patients undergo surgery for craniosynostosis prior to hydrocephalus treatment. While VPS treatment is performed more frequently, VPS and ETV are both reasonable options, with decreasing revision rates with increasing age, for the treatment of hydrocephalus associated with craniosynostosis.

Free access

Concezio Di Rocco, John R. W. Kestle, Richard Hayward, and Jesse A. Taylor

Free access

Cordell M. Baker, Vijay M. Ravindra, Barbu Gociman, Faizi A. Siddiqi, Jesse A. Goldstein, Matthew D. Smyth, Amy Lee, Richard C. E. Anderson, Kamlesh B. Patel, Craig Birgfeld, Ian F. Pollack, Thomas Imahiyerobo, John R. W. Kestle, and for the Synostosis Research Group

OBJECTIVE

Sagittal synostosis is the most common form of isolated craniosynostosis. Although some centers have reported extensive experience with this condition, most reports have focused on a single center. In 2017, the Synostosis Research Group (SynRG), a multicenter collaborative network, was formed to study craniosynostosis. Here, the authors report their early experience with treating sagittal synostosis in the network. The goals were to describe practice patterns, identify variations, and generate hypotheses for future research.

METHODS

All patients with a clinical diagnosis of isolated sagittal synostosis who presented to a SynRG center between March 1, 2017, and October 31, 2019, were included. Follow-up information through October 31, 2020, was included. Data extracted from the prospectively maintained SynRG registry included baseline parameters, surgical adjuncts and techniques, complications prior to discharge, and indications for reoperation. Data analysis was descriptive, using frequencies for categorical variables and means and medians for continuous variables.

RESULTS

Two hundred five patients had treatment for sagittal synostosis at 5 different sites. One hundred twenty-six patients were treated with strip craniectomy and 79 patients with total cranial vault remodeling. The most common strip craniectomy was wide craniectomy with parietal wedge osteotomies (44%), and the most common cranial vault remodeling procedure was total vault remodeling without forehead remodeling (63%). Preoperative mean cephalic indices (CIs) were similar between treatment groups: 0.69 for strip craniectomy and 0.68 for cranial vault remodeling. Thirteen percent of patients had other health problems. In the cranial vault cohort, 81% of patients who received tranexamic acid required a transfusion compared with 94% of patients who did not receive tranexamic acid. The rates of complication were low in all treatment groups. Five patients (2%) had an unintended reoperation. The mean change in CI was 0.09 for strip craniectomy and 0.06 for cranial vault remodeling; wide craniectomy resulted in a greater change in CI in the strip craniectomy group.

CONCLUSIONS

The baseline severity of scaphocephaly was similar across procedures and sites. Treatment methods varied, but cranial vault remodeling and strip craniectomy both resulted in satisfactory postoperative CIs. Use of tranexamic acid may reduce the need for transfusion in cranial vault cases. The wide craniectomy technique for strip craniectomy seemed to be associated with change in CI. Both findings seem amenable to testing in a randomized controlled trial.

Restricted access

Mandeep S. Tamber, John R. W. Kestle, Ron W. Reeder, Richard Holubkov, Jessica Alvey, Samuel R. Browd, James M. Drake, Abhaya V. Kulkarni, David D. Limbrick Jr., Patrick J. McDonald, Curtis J. Rozzelle, Tamara D. Simon, Robert Naftel, Chevis N. Shannon, John C. Wellons III, William E. Whitehead, Jay Riva-Cambrin, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Analysis of temporal trends in patient populations and procedure types may provide important information regarding the evolution of hydrocephalus treatment. The purpose of this study was to use the Hydrocephalus Clinical Research Network’s Core Data Project to identify meaningful trends in patient characteristics and the surgical management of pediatric hydrocephalus over a 9-year period.

METHODS

The Core Data Project prospectively collected patient and procedural data on the study cohort from 9 centers between 2008 and 2016. Logistic and Poisson regression were used to test for significant temporal trends in patient characteristics and new and revision hydrocephalus procedures.

RESULTS

The authors analyzed 10,149 procedures in 5541 patients. New procedures for hydrocephalus (shunt or endoscopic third ventriculostomy [ETV]) decreased by 1.5%/year (95% CI −3.1%, +0.1%). During the study period, new shunt insertions decreased by 6.5%/year (95% CI −8.3%, −4.6%), whereas new ETV procedures increased by 12.5%/year (95% CI 9.3%, 15.7%). Revision procedures for hydrocephalus (shunt or ETV) decreased by 4.2%/year (95% CI −5.2%, −3.1%), driven largely by a decrease of 5.7%/year in shunt revisions (95% CI −6.8%, −4.6%). Concomitant with the observed increase in new ETV procedures was an increase in ETV revisions (13.4%/year, 95% CI 9.6%, 17.2%). Because revisions decreased at a faster rate than new procedures, the Revision Quotient (ratio of revisions to new procedures) for the Network decreased significantly over the study period (p = 0.0363). No temporal change was observed in the age or etiology characteristics of the cohort, although the proportion of patients with one or more complex chronic conditions significantly increased over time (p = 0.0007).

CONCLUSIONS

Over a relatively short period, important changes in hydrocephalus care have been observed. A significant temporal decrease in revision procedures amid the backdrop of a more modest change in new procedures appears to be the most notable finding and may be indicative of an improvement in the quality of surgical care for pediatric hydrocephalus. Further studies will be directed at elucidation of the possible drivers of the observed trends.

Restricted access

Mandeep S. Tamber, John R. W. Kestle, Ron W. Reeder, Richard Holubkov, Jessica Alvey, Samuel R. Browd, James M. Drake, Abhaya V. Kulkarni, David D. Limbrick Jr., Patrick J. McDonald, Curtis J. Rozzelle, Tamara D. Simon, Robert Naftel, Chevis N. Shannon, John C. Wellons III, William E. Whitehead, Jay Riva-Cambrin, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Analysis of temporal trends in patient populations and procedure types may provide important information regarding the evolution of hydrocephalus treatment. The purpose of this study was to use the Hydrocephalus Clinical Research Network’s Core Data Project to identify meaningful trends in patient characteristics and the surgical management of pediatric hydrocephalus over a 9-year period.

METHODS

The Core Data Project prospectively collected patient and procedural data on the study cohort from 9 centers between 2008 and 2016. Logistic and Poisson regression were used to test for significant temporal trends in patient characteristics and new and revision hydrocephalus procedures.

RESULTS

The authors analyzed 10,149 procedures in 5541 patients. New procedures for hydrocephalus (shunt or endoscopic third ventriculostomy [ETV]) decreased by 1.5%/year (95% CI −3.1%, +0.1%). During the study period, new shunt insertions decreased by 6.5%/year (95% CI −8.3%, −4.6%), whereas new ETV procedures increased by 12.5%/year (95% CI 9.3%, 15.7%). Revision procedures for hydrocephalus (shunt or ETV) decreased by 4.2%/year (95% CI −5.2%, −3.1%), driven largely by a decrease of 5.7%/year in shunt revisions (95% CI −6.8%, −4.6%). Concomitant with the observed increase in new ETV procedures was an increase in ETV revisions (13.4%/year, 95% CI 9.6%, 17.2%). Because revisions decreased at a faster rate than new procedures, the Revision Quotient (ratio of revisions to new procedures) for the Network decreased significantly over the study period (p = 0.0363). No temporal change was observed in the age or etiology characteristics of the cohort, although the proportion of patients with one or more complex chronic conditions significantly increased over time (p = 0.0007).

CONCLUSIONS

Over a relatively short period, important changes in hydrocephalus care have been observed. A significant temporal decrease in revision procedures amid the backdrop of a more modest change in new procedures appears to be the most notable finding and may be indicative of an improvement in the quality of surgical care for pediatric hydrocephalus. Further studies will be directed at elucidation of the possible drivers of the observed trends.

Free access

Jennifer L. Quon, Michelle Han, Lily H. Kim, Mary Ellen Koran, Leo C. Chen, Edward H. Lee, Jason Wright, Vijay Ramaswamy, Robert M. Lober, Michael D. Taylor, Gerald A. Grant, Samuel H. Cheshier, John R. W. Kestle, Michael S. B. Edwards, and Kristen W. Yeom

OBJECTIVE

Imaging evaluation of the cerebral ventricles is important for clinical decision-making in pediatric hydrocephalus. Although quantitative measurements of ventricular size, over time, can facilitate objective comparison, automated tools for calculating ventricular volume are not structured for clinical use. The authors aimed to develop a fully automated deep learning (DL) model for pediatric cerebral ventricle segmentation and volume calculation for widespread clinical implementation across multiple hospitals.

METHODS

The study cohort consisted of 200 children with obstructive hydrocephalus from four pediatric hospitals, along with 199 controls. Manual ventricle segmentation and volume calculation values served as “ground truth” data. An encoder-decoder convolutional neural network architecture, in which T2-weighted MR images were used as input, automatically delineated the ventricles and output volumetric measurements. On a held-out test set, segmentation accuracy was assessed using the Dice similarity coefficient (0 to 1) and volume calculation was assessed using linear regression. Model generalizability was evaluated on an external MRI data set from a fifth hospital. The DL model performance was compared against FreeSurfer research segmentation software.

RESULTS

Model segmentation performed with an overall Dice score of 0.901 (0.946 in hydrocephalus, 0.856 in controls). The model generalized to external MR images from a fifth pediatric hospital with a Dice score of 0.926. The model was more accurate than FreeSurfer, with faster operating times (1.48 seconds per scan).

CONCLUSIONS

The authors present a DL model for automatic ventricle segmentation and volume calculation that is more accurate and rapid than currently available methods. With near-immediate volumetric output and reliable performance across institutional scanner types, this model can be adapted to the real-time clinical evaluation of hydrocephalus and improve clinician workflow.

Free access

Jonathan Pindrik, Jay Riva-Cambrin, Abhaya V. Kulkarni, Jessica S. Alvey, Ron W. Reeder, Ian F. Pollack, John C. Wellons III, Eric M. Jackson, Curtis J. Rozzelle, William E. Whitehead, David D. Limbrick Jr., Robert P. Naftel, Chevis Shannon, Patrick J. McDonald, Mandeep S. Tamber, Todd C. Hankinson, Jason S. Hauptman, Tamara D. Simon, Mark D. Krieger, Richard Holubkov, John R. W. Kestle, and for the Hydrocephalus Clinical Research Network

OBJECTIVE

Few studies have addressed surgical resource utilization—surgical revisions and associated hospital admission days—following shunt insertion or endoscopic third ventriculostomy (ETV) with or without choroid plexus cauterization (CPC) for CSF diversion in hydrocephalus. Study members of the Hydrocephalus Clinical Research Network (HCRN) investigated differences in surgical resource utilization between CSF diversion strategies in hydrocephalus in infants.

METHODS

Patients up to corrected age 24 months undergoing initial definitive treatment of hydrocephalus were reviewed from the prospectively maintained HCRN Core Data Project (Hydrocephalus Registry). Postoperative courses (at 1, 3, and 5 years) were studied for hydrocephalus-related surgeries (primary outcome) and hospital admission days related to surgical revision (secondary outcome). Data were summarized using descriptive statistics and compared using negative binomial regression, controlling for age, hydrocephalus etiology, and HCRN center. The study population was organized into 3 groups (ETV alone, ETV with CPC, and CSF shunt insertion) during the 1st postoperative year and 2 groups (ETV alone and CSF shunt insertion) during subsequent years due to limited long-term follow-up data.

RESULTS

Among 1090 patients, the majority underwent CSF shunt insertion (CSF shunt, 83.5%; ETV with CPC, 10.0%; and ETV alone, 6.5%). Patients undergoing ETV with CPC had a higher mean number of revision surgeries (1.2 ± 1.6) than those undergoing ETV alone (0.6 ± 0.8) or CSF shunt insertion (0.7 ± 1.3) over the 1st year after surgery (p = 0.005). At long-term follow-up, patients undergoing ETV alone experienced a nonsignificant lower mean number of revision surgeries (0.7 ± 0.9 at 3 years and 0.8 ± 1.3 at 5 years) than those undergoing CSF shunt insertion (1.1 ± 1.9 at 3 years and 1.4 ± 2.6 at 5 years) and exhibited a lower mean number of hospital admission days related to revision surgery (3.8 ± 10.3 vs 9.9 ± 27.0, p = 0.042).

CONCLUSIONS

Among initial treatment strategies for hydrocephalus, ETV with CPC yielded a higher surgical revision rate within 1 year after surgery. Patients undergoing ETV alone exhibited a nonsignificant lower mean number of surgical revisions than CSF shunt insertion at 3 and 5 years postoperatively. Additionally, the ETV-alone cohort demonstrated significantly fewer hospital admission days related to surgical management of hydrocephalus within 3 years after surgery. These findings suggest a time-dependent benefit of ETV over CSF shunt insertion regarding surgical resource utilization.