Browse

You are looking at 1 - 10 of 22 items for :

  • Journal of Neurosurgery: Pediatrics x
  • Refine by Access: all x
  • By Author: Blount, Jeffrey P. x
Clear All
Free access

Nikita G. Alexiades, Edward S. Ahn, Jeffrey P. Blount, Douglas L. Brockmeyer, Samuel R. Browd, Gerald A. Grant, Gregory G. Heuer, Todd C. Hankinson, Bermans J. Iskandar, Andrew Jea, Mark D. Krieger, Jeffrey R. Leonard, David D. Limbrick Jr., Cormac O. Maher, Mark R. Proctor, David I. Sandberg, John C. Wellons III, Belinda Shao, Neil A. Feldstein, and Richard C. E. Anderson

OBJECTIVE

Complications after complex tethered spinal cord (cTSC) surgery include infections and cerebrospinal fluid (CSF) leaks. With little empirical evidence to guide management, there is variability in the interventions undertaken to limit complications. Expert-based best practices may improve the care of patients undergoing cTSC surgery. Here, authors conducted a study to identify consensus-driven best practices.

METHODS

The Delphi method was employed to identify consensual best practices. A literature review regarding cTSC surgery together with a survey of current practices was distributed to 17 board-certified pediatric neurosurgeons. Thirty statements were then formulated and distributed to the group. Results of the second survey were discussed during an in-person meeting leading to further consensus, which was defined as ≥ 80% agreement on a 4-point Likert scale (strongly agree, agree, disagree, strongly disagree).

RESULTS

Seventeen consensus-driven best practices were identified, with all participants willing to incorporate them into their practice. There were four preoperative interventions: (1, 2) asymptomatic AND symptomatic patients should be referred to urology preoperatively, (3, 4) routine preoperative urine cultures are not necessary for asymptomatic AND symptomatic patients. There were nine intraoperative interventions: (5) patients should receive perioperative cefazolin or an equivalent alternative in the event of allergy, (6) chlorhexidine-based skin preparation is the preferred regimen, (7) saline irrigation should be used intermittently throughout the case, (8) antibiotic-containing irrigation should be used following dural closure, (9) a nonlocking running suture technique should be used for dural closure, (10) dural graft overlay should be used when unable to obtain primary dural closure, (11) an expansile dural graft should be incorporated in cases of lipomyelomeningocele in which primary dural closure does not permit free flow of CSF, (12) paraxial muscles should be closed as a layer separate from the fascia, (13) routine placement of postoperative drains is not necessary. There were three postoperative interventions: (14) postoperative antibiotics are an option and, if given, should be discontinued within 24 hours; (15) patients should remain flat for at least 24 hours postoperatively; (16) routine use of abdominal binders or other compressive devices postoperatively is not necessary. One intervention was prioritized for additional study: (17) further study of additional gram-negative perioperative coverage is needed.

CONCLUSIONS

A modified Delphi technique was used to develop consensus-driven best practices for decreasing wound complications after cTSC surgery. Further study is required to determine if implementation of these practices will lead to reduced complications. Discussion through the course of this study resulted in the initiation of a multicenter study of gram-negative surgical site infections in cTSC surgery.

Full access

Irene Kim, Betsy Hopson, Inmaculada Aban, Elias B. Rizk, Mark S. Dias, Robin Bowman, Laurie L. Ackerman, Michael D. Partington, Heidi Castillo, Jonathan Castillo, Paula R. Peterson, Jeffrey P. Blount, and Brandon G. Rocque

OBJECTIVE

The purpose of this study was to determine the rate of decompression for Chiari malformation type II in individuals with myelomeningocele in the National Spina Bifida Patient Registry (NSBPR). In addition, the authors explored the variation in rates of Chiari II decompression across NSBPR institutions, examined the relationship between Chiari II decompression and functional lesion level of the myelomeningocele, age, and need for tracheostomy, and they evaluated for temporal trends in rates of Chiari II decompression.

METHODS

The authors queried the NSBPR to identify all individuals with myelomeningocele between 2009 and 2015. Among these patients, they identified individuals who had undergone at least 1 Chiari II decompression as well as those who had undergone tracheostomy. For each participating NSBPR institution, the authors calculated the proportion of patients enrolled at that site who underwent Chiari II decompression. Logistic regression was performed to analyze the relationship between Chiari II decompression, functional lesion level, age at decompression, and history of tracheostomy.

RESULTS

Of 4448 individuals with myelomeningocele identified from 26 institutions, 407 (9.15%) had undergone at least 1 Chiari II decompression. Fifty-one patients had undergone tracheostomy. Logistic regression demonstrated a statistically significant relationship between Chiari II decompression and functional lesion level of the myelomeningocele, with a more rostral lesion level associated with a higher likelihood of posterior fossa decompression. Similarly, children born before 2005 and those with history of tracheostomy had a significantly higher likelihood of Chiari II decompression. There was no association between functional lesion level and need for tracheostomy. However, among those children who underwent Chiari II decompression, the likelihood of also undergoing tracheostomy increased significantly with younger age at decompression.

CONCLUSIONS

The rate of Chiari II decompression in patients with myelomeningocele in the NSBPR is consistent with that in previously published literature. There is a significant relationship between Chiari II decompression and functional lesion level of the myelomeningocele, which has not previously been reported. Younger children who undergo Chiari II decompression are more likely to have undergone tracheostomy. There appears to be a shift away from Chiari II decompression, as children born before 2005 were more likely to undergo Chiari II decompression than those born in 2005 or later.

Full access

Irene Kim, Betsy Hopson, Inmaculada Aban, Elias B. Rizk, Mark S. Dias, Robin Bowman, Laurie L. Ackerman, Michael D. Partington, Heidi Castillo, Jonathan Castillo, Paula R. Peterson, Jeffrey P. Blount, and Brandon G. Rocque

OBJECTIVE

Although the majority of patients with myelomeningocele have hydrocephalus, reported rates of hydrocephalus treatment vary widely. The purpose of this study was to determine the rate of surgical treatment for hydrocephalus in patients with myelomeningocele in the National Spina Bifida Patient Registry (NSBPR). In addition, the authors explored the variation in shunting rates across NSBPR institutions, examined the relationship between hydrocephalus, and the functional lesion level of the myelomeningocele, and evaluated for temporal trends in rates of treated hydrocephalus.

METHODS

The authors queried the NSBPR to identify all patients with myelomeningoceles. Individuals were identified as having been treated for hydrocephalus if they had undergone at least 1 hydrocephalus-related operation. For each participating NSBPR institution, the authors calculated the proportion of patients with treated hydrocephalus who were enrolled at that site. Logistic regression was performed to analyze the relationship between hydrocephalus and the functional lesion level of the myelomeningocele and to compare the rate of treated hydrocephalus in children born before 2005 with those born in 2005 or later.

RESULTS

A total of 4448 patients with myelomeningocele were identified from 26 institutions, of whom 3558 patients (79.99%) had undergone at least 1 hydrocephalus-related operation. The rate of treated hydrocephalus ranged from 72% to 96% among institutions enrolling more than 10 patients. This difference in treatment rates between centers was statistically significant (p < 0.001). Insufficient data were available in the NSBPR to analyze reasons for the different rates of hydrocephalus treatment between sites. Multivariate logistic regression demonstrated that more rostral functional lesion levels were associated with higher rates of treated hydrocephalus (p < 0.001) but demonstrated no significant difference in hydrocephalus treatment rates between children born before versus after 2005.

CONCLUSIONS

The rate of hydrocephalus treatment in patients with myelomeningocele in the NSBPR is 79.99%, which is consistent with the rates in previously published literature. The authors’ data demonstrate a clear association between functional lesion level of the myelomeningocele and the need for hydrocephalus treatment.

Full access

Edward O. Komolafe, Ibironke O. Ogunbameru, Chiazor U. Onyia, Oluwafemi F. Owagbemi, and Fred S. Ige-Orhionkpaibima

Full access

Elizabeth N. Kuhn, Betsy Hopson, Michael J. Conklin, and Jeffrey P. Blount

OBJECTIVE

Patients with myelomeningocele are often affected by scoliosis and tethered cord syndrome, and frequently require spine surgery. Intradural spine surgeries may carry an inherently higher risk of inducing shunt malfunction due to entry into the subarachnoid space. In this study, the authors sought to compare rates of shunt malfunction after intradural and extradural spine surgeries among pediatric patients with myelomeningocele.

METHODS

The authors reviewed records of the National Spina Bifida Program Registry for Children’s Hospital of Alabama. The Exago reporting function was used to identify patients who had received at least one of the following procedures: shunt revision, tethered cord release (TCR), or spinal fusion for deformity. The registry records were reviewed for all identified patients to determine if a shunt revision was performed within the 1st year after TCR or spinal fusion.

RESULTS

Final analyses included 117 patients, of whom 39 underwent spinal fusion and 78 underwent TCR. Among patients who underwent spinal fusion, shunt revision was performed within 30 days in 2 patients (5.1%), within 60 days in 2 (5.1%), within 90 days in 4 (10.3%), and within 1 year in 5 (12.8%). Among patients who underwent TCR, shunt revision was performed within 30 days in 7 patients (9.0%), within 60 days in 10 (12.8%), within 90 days in 11 (14.1%), and within 1 year in 17 (21.8%). Using the log-rank test, there was no significant difference in Kaplan-Meier curves between intradural and extradural groups (p = 0.59).

CONCLUSIONS

In a review of single-institution registry data, the authors found no statistically significant difference in the risk of shunt malfunction after intradural and extradural spine surgeries.

Full access

Esther B. Dupépé, Daxa M. Patel, Brandon G. Rocque, Betsy Hopson, Anastasia A. Arynchyna, E. Ralee' Bishop, and Jeffrey P. Blount

OBJECTIVE

Although there are known risk factors for the development of neural tube defects (NTDs), little is known regarding the role of family history. The authors' goal in this study is to describe the family history in their population of patients with NTDs.

METHODS

Surveys were completed for 254 patients who were accompanied by their biological mother during their annual visit to the multidisciplinary Spina Bifida Clinic at Children's of Alabama. An NTD has been diagnosed in all patients who are seen in this clinic (myelomeningocele, lipomeningocele, split cord malformation, and congenital dermal sinus tract). Each mother answered questions regarding known NTD risk factors and their pregnancy, as well as the family history of NTDs, other CNS disorders, and birth defects.

RESULTS

The overall prevalence of family history of NTDs in children with an NTD was 16.9% (n = 43), of which 3.1% (n = 8) were in first-degree relatives. In patients with myelomeningocele, 17.7% (n = 37) had a positive family history for NTDs, with 3.8% in first-degree relatives. Family history in the paternal lineage for all NTDs was 8.7% versus 10.6% in the maternal lineage. Twenty-two patients (8.7%) had a family history of other congenital CNS disorders. Fifteen (5.9%) had a family history of Down syndrome, 12 (4.7%) had a family history of cerebral palsy, and 13 (5.1%) patients had a family history of clubfoot. Fourteen (5.5%) had a family history of cardiac defect, and 13 (5.1%) had a family history of cleft lip or palate.

CONCLUSIONS

The family history of NTDs was 16.9% in children with NTD without a difference between maternal and paternal lineage. This high rate of positive family history suggests that genetics and epigenetics may play a larger role in the pathogenesis of NTD in the modern era of widespread folate supplementation.

Full access

Brandon A. Sherrod, Anastasia A. Arynchyna, James M. Johnston, Curtis J. Rozzelle, Jeffrey P. Blount, W. Jerry Oakes, and Brandon G. Rocque

OBJECTIVE

Surgical site infection (SSI) following CSF shunt operations has been well studied, yet risk factors for nonshunt pediatric neurosurgery are less well understood. The purpose of this study was to determine SSI rates and risk factors following nonshunt pediatric neurosurgery using a nationwide patient cohort and an institutional data set specifically for better understanding SSI.

METHODS

The authors reviewed the American College of Surgeons National Surgical Quality Improvement Program–Pediatric (ACS NSQIP-P) database for the years 2012–2014, including all neurosurgical procedures performed on pediatric patients except CSF shunts and hematoma evacuations. SSI included deep (intracranial abscesses, meningitis, osteomyelitis, and ventriculitis) and superficial wound infections. The authors performed univariate analyses of SSI association with procedure, demographic, comorbidity, operative, and hospital variables, with subsequent multivariate logistic regression analysis to determine independent risk factors for SSI within 30 days of the index procedure. A similar analysis was performed using a detailed institutional infection database from Children's of Alabama (COA).

RESULTS

A total of 9296 nonshunt procedures were identified in NSQIP-P with an overall 30-day SSI rate of 2.7%. The 30-day SSI rate in the COA institutional database was similar (3.3% of 1103 procedures, p = 0.325). Postoperative time to SSI in NSQIP-P and COA was 14.6 ± 6.8 days and 14.8 ± 7.3 days, respectively (mean ± SD). Myelomeningocele (4.3% in NSQIP-P, 6.3% in COA), spine (3.5%, 4.9%), and epilepsy (3.4%, 3.1%) procedure categories had the highest SSI rates by procedure category in both NSQIP-P and COA. Independent SSI risk factors in NSQIP-P included postoperative pneumonia (OR 4.761, 95% CI 1.269–17.857, p = 0.021), immune disease/immunosuppressant use (OR 3.671, 95% CI 1.371–9.827, p = 0.010), cerebral palsy (OR 2.835, 95% CI 1.463–5.494, p = 0.002), emergency operation (OR 1.843, 95% CI 1.011–3.360, p = 0.046), spine procedures (OR 1.673, 95% CI 1.036–2.702, p = 0.035), acquired CNS abnormality (OR 1.620, 95% CI 1.085–2.420, p = 0.018), and female sex (OR 1.475, 95% CI 1.062–2.049, p = 0.021). The only COA factor independently associated with SSI in the COA database included clean-contaminated wound classification (OR 3.887, 95% CI 1.354–11.153, p = 0.012), with public insurance (OR 1.966, 95% CI 0.957–4.041, p = 0.066) and spine procedures (OR 1.982, 95% CI 0.955–4.114, p = 0.066) approaching significance. Both NSQIP-P and COA multivariate model C-statistics were > 0.7.

CONCLUSIONS

The NSQIP-P SSI rates, but not risk factors, were similar to data from a single center.

Full access

Daxa M. Patel, Brandon G. Rocque, Betsy Hopson, Anastasia Arynchyna, E. Ralee’ Bishop, David Lozano, and Jeffrey P. Blount

OBJECT

A paucity of literature examines sleep apnea in patients with myelomeningocele, Chiari malformation Type II (CM-II), and related hydrocephalus. Even less is known about the effect of hydrocephalus treatment or CM-II decompression on sleep hygiene. This study is an exploratory analysis of sleep-disordered breathing in patients with myelomeningocele and the effects of neurosurgical treatments, in particular CM-II decompression and hydrocephalus management, on sleep organization.

METHODS

The authors performed a retrospective review of all patients seen in their multidisciplinary spina bifida clinic (approximately 435 patients with myelomeningocele) to evaluate polysomnographs obtained between March 1999 and July 2013. They analyzed symptoms prompting evaluation, results, and recommended interventions by using descriptive statistics. They also conducted a subset analysis of 9 children who had undergone polysomnography both before and after neurosurgical intervention.

RESULTS

Fifty-two patients had polysomnographs available for review. Sleep apnea was diagnosed in 81% of these patients. The most common presenting symptom was “breathing difficulties” (18 cases [43%]). Mild sleep apnea was present in 26 cases (50%), moderate in 10 (19%), and severe in 6 (12%). Among the 42 patients with abnormal sleep architecture, 30 had predominantly obstructive apneas and 12 had predominantly central apneas. The most common pulmonology-recommended intervention was adjustment of peripheral oxygen supplementation (24 cases [57%]), followed by initiation of peripheral oxygen (10 cases [24%]).

In a subset analysis of 9 patients who had sleep studies before and after neurosurgical intervention, there was a trend toward a decrease in the mean number of respiratory events (from 34.8 to 15.9, p = 0.098), obstructive events (from 14.7 to 13.9, p = 0.85), and central events (from 20.1 to 2.25, p = 0.15) and in the apnea-hypopnea index (from 5.05 to 2.03, p = 0.038, not significant when corrected for multiple measures).

CONCLUSIONS

A large proportion of patients with myelomeningocele who had undergone polysomnography showed evidence of disordered sleep on an initial study. Furthermore, 31% of patients had moderate or severe obstructive sleep apnea. Myelomeningocele patients with an abnormal sleep structure who had undergone nonoperative treatment with peripheral oxygen supplementation showed improvement in the apnea-hypopnea index. Results in this study suggested that polysomnography in patients with myelomeningocele may present an opportunity to detect and classify sleep apnea, identify low-risk interventions, and prevent future implications of sleep-disordered breathing.