Browse

You are looking at 1 - 10 of 173 items for

  • All content x
  • By Author: Berger, Mitchel S. x
Clear All
Restricted access

Andrew J. Gogos, Jacob S. Young, Ramin A. Morshed, Lauro N. Avalos, Roger S. Noss, Javier E. Villanueva-Meyer, Shawn L. Hervey-Jumper and Mitchel S. Berger

OBJECTIVE

Maximal safe resection of gliomas near motor pathways is facilitated by intraoperative mapping. The authors and other groups have described the use of bipolar or monopolar direct stimulation to identify functional tissue, as well as transcranial or transcortical motor evoked potentials (MEPs) to monitor motor pathways. Here, the authors describe their initial experience using all 3 modalities to identify, monitor, and preserve cortical and subcortical motor systems during glioma surgery.

METHODS

Intraoperative mapping data were extracted from a prospective registry of glioma resections near motor pathways. Additional demographic, clinical, pathological, and imaging data were extracted from the electronic medical record. All patients with new or worsened postoperative motor deficits were followed for at least 6 months.

RESULTS

Between January 2018 and August 2019, 59 operations were performed in 58 patients. Overall, patients in 6 cases (10.2%) had new or worse immediate postoperative deficits. Patients with temporary deficits all had at least Medical Research Council grade 4/5 power. Only 2 patients (3.4%) had permanently worsened deficits after 6 months, both of which were associated with diffusion restriction consistent with ischemia within the corticospinal tract. One patient’s deficit improved to 4/5 and the other to 4/5 proximally and 3/5 distally in the lower limb, allowing ambulation following rehabilitation. Subcortical motor pathways were identified in 51 cases (86.4%) with monopolar high-frequency stimulation, but only in 6 patients using bipolar stimulation. Transcranial or cortical MEPs were diminished in only 6 cases, 3 of which had new or worsened deficits, with 1 permanent deficit. Insula location (p = 0.001) and reduction in MEPs (p = 0.01) were the only univariate predictors of new or worsened postoperative deficits. Insula location was the only predictor of permanent deficits (p = 0.046). The median extent of resection was 98.0%.

CONCLUSIONS

Asleep triple motor mapping is safe and resulted in a low rate of deficits without compromising the extent of resection.

Restricted access

Jacob S. Young, Andrew K. Chan, Jennifer A. Viner, Sujatha Sankaran, Alvin Y. Chan, Sarah Imershein, Aldea Meary-Miller, Philip V. Theodosopoulos, Line Jacques, Manish K. Aghi, Edward F. Chang, Shawn L. Hervey-Jumper, Tracy Ward, Liz Gibson, Mariann M. Ward, Peter Sanftner, Stacy Wong, Dominic Amara, Stephen T. Magill, Joseph A. Osorio, Brinda Venkatesh, Ralph Gonzales, Catherine Lau, Christy Boscardin, Michael Wang, Kim Berry, Laurie McCullagh, Mary Reid, Kayla Reels, Sara Nedkov, Mitchel S. Berger and Michael W. McDermott

OBJECTIVE

High-value medical care is described as care that leads to excellent patient outcomes, high patient satisfaction, and efficient costs. Neurosurgical care in particular can be expensive for the hospital, as substantial costs are accrued during the operation and throughout the postoperative stay. The authors developed a “Safe Transitions Pathway” (STP) model in which select patients went to the postanesthesia care unit (PACU) and then the neuro-transitional care unit (NTCU) rather than being directly admitted to the neurosciences intensive care unit (ICU) following a craniotomy. They sought to evaluate the clinical and financial outcomes as well as the impact on the patient experience for patients who participated in the STP and bypassed the ICU level of care.

METHODS

Patients were enrolled during the 2018 fiscal year (FY18; July 1, 2017, through June 30, 2018). The electronic medical record was reviewed for clinical information and the hospital cost accounting record was reviewed for financial information. Nurses and patients were given a satisfaction survey to assess their respective impressions of the hospital stay and of the recovery pathway.

RESULTS

No patients who proceeded to the NTCU postoperatively were upgraded to the ICU level of care postoperatively. There were no deaths in the STP group, and no patients required a return to the operating room during their hospitalization (95% CI 0%–3.9%). There was a trend toward fewer 30-day readmissions in the STP patients than in the standard pathway patients (1.2% [95% CI 0.0%–6.8%] vs 5.1% [95% CI 2.5%–9.1%], p = 0.058). The mean number of ICU days saved per case was 1.20. The average postprocedure length of stay was reduced by 0.25 days for STP patients. Actual FY18 direct cost savings from 94 patients who went through the STP was $422,128.

CONCLUSIONS

Length of stay, direct cost per case, and ICU days were significantly less after the adoption of the STP, and ICU bed utilization was freed for acute admissions and transfers. There were no substantial complications or adverse patient outcomes in the STP group.

Restricted access

Tomasz Szmuda, Shan Ali and Paweł Słoniewski

Restricted access

Anthony T. Lee, Claire Faltermeier, Ramin A. Morshed, Jacob S. Young, Sofia Kakaizada, Claudia Valdivia, Anne M. Findlay, Phiroz E. Tarapore, Srikantan S. Nagarajan, Shawn L. Hervey-Jumper and Mitchel S. Berger

OBJECTIVE

Gliomas are intrinsic brain tumors with the hallmark of diffuse white matter infiltration, resulting in short- and long-range network dysfunction. Preoperative magnetoencephalography (MEG) can assist in maximizing the extent of resection while minimizing morbidity. While MEG has been validated in motor mapping, its role in speech mapping remains less well studied. The authors assessed how the resection of intraoperative electrical stimulation (IES)–negative, high functional connectivity (HFC) network sites, as identified by MEG, impacts language performance.

METHODS

Resting-state, whole-brain MEG recordings were obtained from 26 patients who underwent perioperative language evaluation and glioma resection that was guided by awake language and IES mapping. The functional connectivity of an individual voxel was determined by the imaginary coherence between the index voxel and the rest of the brain, referenced to its contralesional pair. The percentage of resected HFC voxels was correlated with postoperative language outcomes in tasks of increasing complexity: text reading, 4-syllable repetition, picture naming, syntax (SYN), and auditory stimulus naming (AN).

RESULTS

Overall, 70% of patients (14/20) in whom any HFC tissue was resected developed an early postoperative language deficit (mean 2.3 days, range 1–8 days), compared to 33% of patients (2/6) in whom no HFC tissue was resected (p = 0.16). When bifurcated by the amount of HFC tissue that was resected, 100% of patients (3/3) with an HFC resection > 25% displayed deficits in AN, compared to 30% of patients (6/20) with an HFC resection < 25% (p = 0.04). Furthermore, there was a linear correlation between the severity of AN and SYN decline with percentage of HFC sites resected (p = 0.02 and p = 0.04, respectively). By 2.2 months postoperatively (range 1–6 months), the correlation between HFC resection and both AN and SYN decline had resolved (p = 0.94 and p = 1.00, respectively) in all patients (9/9) except two who experienced early postoperative tumor progression or stroke involving inferior frontooccipital fasciculus.

CONCLUSIONS

Imaginary coherence measures of functional connectivity using MEG are able to identify HFC network sites within and around low- and high-grade gliomas. Removal of IES-negative HFC sites results in early transient postoperative decline in AN and SYN, which resolved by 3 months in all patients without stroke or early tumor progression. Measures of functional connectivity may therefore be a useful means of counseling patients about postoperative risk and assist with preoperative surgical planning.

Restricted access

Domenique M. J. Müller, Pierre A. Robe, Hilko Ardon, Frederik Barkhof, Lorenzo Bello, Mitchel S. Berger, Wim Bouwknegt, Wimar A. Van den Brink, Marco Conti Nibali, Roelant S. Eijgelaar, Julia Furtner, Seunggu J. Han, Shawn L. Hervey-Jumper, Albert J. S. Idema, Barbara Kiesel, Alfred Kloet, Jan C. De Munck, Marco Rossi, Tommaso Sciortino, W. Peter Vandertop, Martin Visser, Michiel Wagemakers, Georg Widhalm, Marnix G. Witte, Aeilko H. Zwinderman and Philip C. De Witt Hamer

OBJECTIVE

Decisions in glioblastoma surgery are often guided by presumed eloquence of the tumor location. The authors introduce the “expected residual tumor volume” (eRV) and the “expected resectability index” (eRI) based on previous decisions aggregated in resection probability maps. The diagnostic accuracy of eRV and eRI to predict biopsy decisions, resectability, functional outcome, and survival was determined.

METHODS

Consecutive patients with first-time glioblastoma surgery in 2012–2013 were included from 12 hospitals. The eRV was calculated from the preoperative MR images of each patient using a resection probability map, and the eRI was derived from the tumor volume. As reference, Sawaya’s tumor location eloquence grades (EGs) were classified. Resectability was measured as observed extent of resection (EOR) and residual volume, and functional outcome as change in Karnofsky Performance Scale score. Receiver operating characteristic curves and multivariable logistic regression were applied.

RESULTS

Of 915 patients, 674 (74%) underwent a resection with a median EOR of 97%, functional improvement in 71 (8%), functional decline in 78 (9%), and median survival of 12.8 months. The eRI and eRV identified biopsies and EORs of at least 80%, 90%, or 98% better than EG. The eRV and eRI predicted observed residual volumes under 10, 5, and 1 ml better than EG. The eRV, eRI, and EG had low diagnostic accuracy for functional outcome changes. Higher eRV and lower eRI were strongly associated with shorter survival, independent of known prognostic factors.

CONCLUSIONS

The eRV and eRI predict biopsy decisions, resectability, and survival better than eloquence grading and may be useful preoperative indices to support surgical decisions.

Free access

Alexandra J. Golby, Eric C. Leuthardt, Hugues Duffau and Mitchel S. Berger

Restricted access

Harsh Wadhwa, Sumedh S. Shah, Judy Shan, Justin Cheng, Angad S. Beniwal, Jia-Shu Chen, Sabraj A. Gill, Nikhil Mummaneni, Michael W. McDermott, Mitchel S. Berger and Manish K. Aghi

OBJECTIVE

Neurosurgery is consistently one of the most competitive specialties for resident applicants. The emphasis on research in neurosurgery has led to an increasing number of publications by applicants seeking a successful residency match. The authors sought to produce a comprehensive analysis of research produced by neurosurgical applicants and to establish baseline data of neurosurgery applicant research productivity given the increased emphasis on research output for successful residency match.

METHODS

A retrospective review of publication volume for all neurosurgery interns in 2009, 2011, 2014, 2016, and 2018 was performed using PubMed and Google Scholar. Missing data rates were 11% (2009), 9% (2011), and < 5% (all others). The National Resident Matching Program report “Charting Outcomes in the Match” (ChOM) was interrogated for total research products (i.e., abstracts, presentations, and publications). The publication rates of interns at top 40 programs, students from top 20 medical schools, MD/PhD applicants, and applicants based on location of residency program and medical school were compared statistically against all others.

RESULTS

Total publications per neurosurgery intern (mean ± SD) based on PubMed and Google Scholar were 5.5 ± 0.6 in 2018 (1.7 ± 0.3, 2009; 2.1 ± 0.3, 2011; 2.6 ± 0.4, 2014; 3.8 ± 0.4, 2016), compared to 18.3 research products based on ChOM. In 2018, the mean numbers of publications were as follows: neurosurgery-specific publications per intern, 4.3 ± 0.6; first/last author publications, 2.1 ± 0.3; neurosurgical first/last author publications, 1.6 ± 0.2; basic science publications, 1.5 ± 0.2; and clinical research publications, 4.0 ± 0.5. Mean publication numbers among interns at top 40 programs were significantly higher than those of all other programs in every category (p < 0.001). Except for mean number of basic science publications (p = 0.1), the mean number of publications was higher for interns who attended a top 20 medical school than for those who did not (p < 0.05). Applicants with PhD degrees produced statistically more research in all categories (p < 0.05) except neurosurgery-specific (p = 0.07) and clinical research (p = 0.3). While there was no statistical difference in publication volume based on the geographical location of the residency program, students from medical schools in the Western US produced more research than all other regions (p < 0.01). Finally, research productivity did not correlate with likelihood of medical students staying at their home institution for residency.

CONCLUSIONS

The authors found that the temporal trend toward increased total research products over time in neurosurgery applicants was driven mostly by increased nonindexed research (abstracts, presentations, chapters) rather than by increased peer-reviewed publications. While we also identified applicant-specific factors (MD/PhDs and applicants from the Western US) and an outcome (matching at research-focused institutions) associated with increased applicant publications, further work will be needed to determine the emphasis that programs and applicants will need to place on these publications.

Restricted access

Sujatha Sankaran, John P. Andrews, Madeline Chicas, Robert M. Wachter and Mitchel S. Berger

Restricted access

Ping Zhu, Xianglin L. Du, Angel I. Blanco, Leomar Y. Ballester, Nitin Tandon, Mitchel S. Berger, Jay-Jiguang Zhu and Yoshua Esquenazi

OBJECTIVE

The object of this study was to investigate the impact of facility type (academic center [AC] vs non-AC) and facility volume (high-volume facility [HVF] vs low-volume facility [LVF]) on low-grade glioma (LGG) outcomes.

METHODS

This retrospective cohort study included 5539 LGG patients (2004–2014) from the National Cancer Database. Patients were categorized by facility type and volume (non-AC vs AC, HVF vs LVF). An HVF was defined as the top 1% of facilities according to the number of annual cases. Outcomes included overall survival, treatment receipt, and postoperative outcomes. Kaplan-Meier and Cox proportional-hazards models were applied. The Heller explained relative risk was computed to assess the relative importance of each survival predictor.

RESULTS

Significant survival advantages were observed at HVFs (HR 0.67, 95% CI 0.55–0.82, p < 0.001) and ACs (HR 0.84, 95% CI 0.73–0.97, p = 0.015), both prior to and after adjusting for all covariates. Tumor resection was 41% and 26% more likely to be performed at HVFs vs LVFs and ACs vs non-ACs, respectively. Chemotherapy was 40% and 88% more frequently to be utilized at HVFs vs LVFs and ACs vs non-ACs, respectively. Prolonged length of stay (LOS) was decreased by 42% and 24% at HVFs and ACs, respectively. After tumor histology, tumor pattern, and codeletion of 1p19q, facility type and surgical procedure were the most important contributors to survival variance. The main findings remained consistent using propensity score matching and multiple imputation.

CONCLUSIONS

This study provides evidence of survival benefits among LGG patients treated at HVFs and ACs. An increased likelihood of undergoing resections, receiving adjuvant therapies, having shorter LOSs, and the multidisciplinary environment typically found at ACs and HVFs are important contributors to the authors’ finding.

Restricted access

Arman Jahangiri, Patrick M. Flanigan, Maxine Arnush, Ankush Chandra, Jonathan W. Rick, Sarah Choi, Alvin Chou, Mitchel S. Berger and Manish K. Aghi

OBJECTIVE

Neurosurgeons play an important role in advancing medicine through research, the funding of which is historically linked to the National Institutes of Health (NIH). The authors defined variables associated with neurosurgical NIH funding, prevalence of funded topics by neurosurgical subspecialty, and temporal trends in NIH neurosurgical funding.

METHODS

The authors conducted a retrospective review of NIH-funded American Association of Neurological Surgeons members using NIH RePORTER (http://report.nih.gov/) for the years 1991–2015.

RESULTS

The authors followed 6515 neurosurgeons from 1991 to 2015, including 6107 (94%) non–MD-PhD physicians and 408 (6%) MD-PhDs. NIH grants were awarded to 393 (6%) neurosurgeons, with 23.2% of all first-time grants awarded to the top 5 funded institutions. The average total funded grant-years per funded neurosurgeon was 12.5 (range 1–85 grant-years). A higher percentage of MD-PhDs were NIH funded than MDs (22% [n = 91] vs 5% [n = 297], p < 0.0001). The most common grants awarded were R01 (128, 33%), K08 (69, 18%), F32 (60, 15%), M01 (50, 13%), and R21 (39, 10%). F32 and K08 recipients were 9-fold (18% vs 2%, p < 0.001) and 19-fold (38% vs 2%, p < 0.001) more likely to procure an R01 and procured R01 funding earlier in their careers (F32: 7 vs 12 years after residency, p = 0.03; K08: 9 vs 12 years, p = 0.01). Each year, the number of neurosurgeons with active grants linearly increased by 2.2 (R2 = 0.81, p < 0.001), whereas the number of total active grants run by neurosurgeons increased at nearly twice the rate (4.0 grants/year) (R2 = 0.91, p < 0.001). Of NIH-funded neurosurgical grants, 33 (9%) transitioned to funded clinical trial(s). Funded neurosurgical subspecialties included neuro-oncology (33%), functional/epilepsy (32%), cerebrovascular (17%), trauma (10%), and spine (6%). Finally, the authors modeled trends in the number of active training grants and found a linear increase in active R01s (R2 = 0.95, p < 0.001); however, both F32 (R2 = 0.36, p = 0.01) and K08 (R2 = 0.67, p < 0.001) funding had a significant parabolic rise and fall centered around 2003.

CONCLUSIONS

The authors observed an upward trend in R01s awarded to neurosurgeons during the last quarter century. However, their findings of decreased K08 and F32 training grant funding to neurosurgeons and the impact of these training grants on the ultimate success and time to success for neurosurgeons seeking R01 funding suggests that this upward trend in R01 funding for neurosurgeons will be difficult to maintain. The authors’ work underscores the importance of continued selection and mentorship of neurosurgeons capable of impacting patient care through research, including the MD-PhDs, who are noted to be more represented among NIH-funded neurosurgeons.