Browse

You are looking at 1 - 10 of 184 items for

  • Refine by Access: all x
  • By Author: Berger, Mitchel S. x
Clear All
Restricted access

Jacob S. Young, Andrew J. Gogos, Alexander A. Aabedi, Ramin A. Morshed, Matheus P. Pereira, Samuel Lashof-Regas, Ziba Mansoori, Tracy Luks, Shawn L. Hervey-Jumper, Javier E. Villanueva-Meyer, and Mitchel S. Berger

OBJECTIVE

The supplementary motor area (SMA) is an eloquent region that is frequently a site for glioma, or the region is included in the resection trajectory to deeper lesions. Although the clinical relevance of SMA syndrome has been well described, it is still difficult to predict who will become symptomatic. The object of this study was to define which patients with SMA gliomas would go on to develop a postoperative SMA syndrome.

METHODS

The University of California, San Francisco, tumor registry was searched for patients who, between 2010 and 2019, had undergone resection for newly diagnosed supratentorial diffuse glioma (WHO grades II–IV) performed by the senior author and who had at least 3 months of follow-up. Pre- and postoperative MRI studies were reviewed to confirm the tumor was located in the SMA region, and the extent of SMA resection was determined by volumetric assessment. Patient, tumor, and outcome data were collected retrospectively from documents available in the electronic medical record. Tumors were registered to a standard brain atlas to create a frequency heatmap of tumor volumes and resection cavities.

RESULTS

During the study period, 56 patients (64.3% male, 35.7% female) underwent resection of a newly diagnosed glioma in the SMA region. Postoperatively, 60.7% developed an SMA syndrome. Although the volume of tumor within the SMA region did not correlate with the development of SMA syndrome, patients with the syndrome had larger resection cavities in the SMA region (25.4% vs 14.2% SMA resection, p = 0.039). The size of the resection cavity in the SMA region did not correlate with the severity of the SMA syndrome. Patients who developed the syndrome had cavities that were located more posteriorly in the SMA region and in the cingulate gyrus. When the frontal aslant tract (FAT) was preserved, 50% of patients developed the SMA syndrome postoperatively, whereas 100% of the patients with disruption of the FAT during surgery developed the SMA syndrome (p = 0.06). Patients with SMA syndrome had longer lengths of stay (5.6 vs 4.1 days, p = 0.027) and were more likely to be discharged to a rehabilitation facility (41.9% vs 0%, p < 0.001). There was no difference in overall survival for newly diagnosed glioblastoma patients with SMA syndrome compared to those without SMA syndrome (1.6 vs 3.0 years, p = 0.33).

CONCLUSIONS

For patients with SMA glioma, more extensive resections and resections involving the posterior SMA region and posterior cingulate gyrus increased the likelihood of a postoperative SMA syndrome. Although SMA syndrome occurred in all cases in which the FAT was resected, FAT preservation does not reliably avoid SMA syndrome postoperatively.

Open access

Jacob S. Young, Ramin A. Morshed, John P. Andrews, Soonmee Cha, and Mitchel S. Berger

BACKGROUND

Prosopagnosia is a rare neurological condition characterized by the impairment of face perception with preserved visual processing and cognitive functioning and is associated with injury to the fusiform gyrus and inferior longitudinal fasciculus (ILF). Reports of this clinical impairment following resection of right temporal lobe diffuse gliomas in the absence of contralateral injury are exceedingly scarce and not expected as a complication of surgery.

OBSERVATIONS

The authors describe the case of a young female patient found to have an incidental diffuse glioma in the right inferior temporal lobe despite evidence of preoperative ILF disruption by the tumor. Following resection of the lesion, despite the preoperative disruption to the ILF by the tumor, the patient developed prosopagnosia. There was no evidence of contralateral, left-sided ILF injury.

LESSONS

Given the significant functional impairment associated with prosopagnosia, neurosurgeons should be aware of the exceedingly rare possibility of a visual-processing deficit following unilateral and, in this case, right-sided inferior temporal lobe glioma resections. More investigation is needed to determine whether preoperative testing can determine dominance of facial-processing networks for patients with lesions in the right inferior posterior temporooccipital lobe and whether intraoperative mapping could help prevent this complication.

Open access

John P. Andrews, Tarun Arora, Philip Theodosopoulos, and Mitchel S. Berger

BACKGROUND

Meningiomas of the atrium of the lateral ventricle present a unique operative challenge. Parietal transcortical approaches have been described with an oblique approach, but a strictly paramedian approach may offer advantages in a dominant hemisphere atrial meningioma.

OBSERVATIONS

The patient presented with several weeks of intermittent headaches. Magnetic resonance imaging (MRI) showed an enhancing intraventricular mass in the atrium of the left lateral ventricle. Three-dimensional reconstructions were created from a preoperative MRI, with 1-mm slices for neuronavigation. Diffusion tensor imaging (DTI) was obtained, and tracts were reconstructed in the patient’s three-dimensional brainspace. DTI tractography delineated a paramedian transparietal corridor devoid of functional white matter tracks. The patient was positioned supine, in a semislouch position. A left parietal craniotomy was performed. Neuronavigation identified a gyrus posterior to the sensory cortex, anterior to the optic radiations and medial to superior longitudinal and arcuate fasciculus fiber tracts. The tumor was debulked to allow mobilization to coagulate capsular blood supply. Gross total resection was achieved. The patient was discharged postoperatively on day 3 without neurological deficits.

LESSONS

A paramedian transparietal approach to a dominant hemisphere meningioma of the lateral ventricle can be a safe and effective way to resect tumors in this anatomically unique operative corridor.

Restricted access

Simon G. Ammanuel, Nyle C. Almeida, Garret Kurteff, Sofia Kakaizada, Annette M. Molinaro, Mitchel S. Berger, Edward F. Chang, and Shawn L. Hervey-Jumper

OBJECTIVE

Impairments of speech are common in patients with glioma and negatively impact health-related quality of life (HRQoL). The benchmark for clinical assessments is task-based measures, which are not always feasible to administer and may miss essential components of HRQoL. In this study, the authors tested the hypothesis that variations in natural language (NL) correlate with HRQoL in a pattern distinct from task-based measures of language performance.

METHODS

NL use was assessed using audio samples collected unobtrusively from 18 patients with newly diagnosed low- and high-grade glioma. NL measures were calculated using manual segmentation and correlated with Quality of Life in Neurological Disorders (Neuro-QoL) outcomes. Spearman’s rank-order correlation was used to determine relationships between Neuro-QoL scores and NL measures.

RESULTS

The distribution of NL measures across the entire patient cohort included a mean ± SD total time speaking of 11.5 ± 2.20 seconds, total number of words of 27.2 ± 4.44, number of function words of 10.9 ± 1.68, number of content words of 16.3 ± 2.91, and speech rate of 2.61 ± 0.20 words/second. Speech rate was negatively correlated with functional domains (rho = −0.62 and p = 0.007 for satisfaction with social roles; rho = −0.74 and p < 0.001 for participation in social roles) but positively correlated with impairment domains (rho = 0.58 and p = 0.009 for fatigue) of Neuro-QoL.

CONCLUSIONS

Assessment of NL at the time of diagnosis may be a useful measure in the context of treatment planning and monitoring outcomes for adult patients with glioma.

Restricted access

Domenique M. J. Müller, Pierre A. Robe, Hilko Ardon, Frederik Barkhof, Lorenzo Bello, Mitchel S. Berger, Wim Bouwknegt, Wimar A. Van den Brink, Marco Conti Nibali, Roelant S. Eijgelaar, Julia Furtner, Seunggu J. Han, Shawn L. Hervey-Jumper, Albert J. S. Idema, Barbara Kiesel, Alfred Kloet, Emmanuel Mandonnet, Jan C. De Munck, Marco Rossi, Tommaso Sciortino, W. Peter Vandertop, Martin Visser, Michiel Wagemakers, Georg Widhalm, Marnix G. Witte, Aeilko H. Zwinderman, and Philip C. De Witt Hamer

OBJECTIVE

The aim of glioblastoma surgery is to maximize the extent of resection while preserving functional integrity. Standards are lacking for surgical decision-making, and previous studies indicate treatment variations. These shortcomings reflect the need to evaluate larger populations from different care teams. In this study, the authors used probability maps to quantify and compare surgical decision-making throughout the brain by 12 neurosurgical teams for patients with glioblastoma.

METHODS

The study included all adult patients who underwent first-time glioblastoma surgery in 2012–2013 and were treated by 1 of the 12 participating neurosurgical teams. Voxel-wise probability maps of tumor location, biopsy, and resection were constructed for each team to identify and compare patient treatment variations. Brain regions with different biopsy and resection results between teams were identified and analyzed for patient functional outcome and survival.

RESULTS

The study cohort consisted of 1087 patients, of whom 363 underwent a biopsy and 724 a resection. Biopsy and resection decisions were generally comparable between teams, providing benchmarks for probability maps of resections and biopsies for glioblastoma. Differences in biopsy rates were identified for the right superior frontal gyrus and indicated variation in biopsy decisions. Differences in resection rates were identified for the left superior parietal lobule, indicating variations in resection decisions.

CONCLUSIONS

Probability maps of glioblastoma surgery enabled capture of clinical practice decisions and indicated that teams generally agreed on which region to biopsy or to resect. However, treatment variations reflecting clinical dilemmas were observed and pinpointed by using the probability maps, which could therefore be useful for quality-of-care discussions between surgical teams for patients with glioblastoma.

Restricted access

Alexander A. Aabedi, Sofia Kakaizada, Jacob S. Young, EunSeon Ahn, Daniel H. Weissman, Mitchel S. Berger, David Brang, and Shawn L. Hervey-Jumper

OBJECTIVE

Intraoperative tasks for awake language mapping are typically selected based on the language tracts that will likely be encountered during tumor resection. However, diminished attention and arousal secondary to perioperative sedatives may reduce a task’s usefulness for identifying eloquent cortex. For instance, accuracy in performing select language tasks may be high preoperatively but decline in the operating room. In the present study, the authors sought to identify language tasks that can be performed with high accuracy in both situational contexts so the neurosurgical team can be confident that speech errors committed during awake language mapping result from direct cortical stimulation to eloquent cortex, rather than from poor performance in general.

METHODS

We administered five language tasks to 44 patients: picture naming (PN), text reading (TR), auditory object naming (AN), repetition of 4-syllable words (4SYL), and production of syntactically intact sentences (SYNTAX). Performance was assessed using the 4-point scale of the quick aphasia battery 24 hours preoperatively and intraoperatively. We next determined whether or not accuracy on each task was higher preoperatively than intraoperatively. We also determined whether 1) intraoperative accuracy on a given task predicted intraoperative performance on the other tasks and 2) low preoperative accuracy on a task predicted a decrease in accuracy intraoperatively.

RESULTS

Relative to preoperative accuracy, intraoperative accuracy declined on PN (3.90 vs 3.82, p = 0.0001), 4SYL (3.96 vs 3.91, p = 0.0006), and SYNTAX (3.85 vs 3.67, p = 0.0001) but not on TR (3.96 vs 3.94, p = 0.13) or AN (3.70 vs 3.58, p = 0.058). Intraoperative accuracy on PN and AN independently predicted intraoperative accuracy on the remaining language tasks (p < 0.001 and p < 0.01, respectively). Finally, low preoperative accuracy on SYNTAX predicted a decrease in accuracy on this task intraoperatively (R = 0.36, p = 0.00002).

CONCLUSIONS

While TR lacks sensitivity in identifying language deficits at baseline, accuracy on TR is stable across testing settings. Baseline accuracy on the other four of our five language tasks was not predictive of intraoperative performance, signifying the need to repeat language tests prior to stimulation mapping to confirm reliability.

Restricted access

Simon G. Ammanuel, Caleb S. Edwards, Andrew K. Chan, Praveen V. Mummaneni, Joseph Kidane, Enrique Vargas, Sarah D’Souza, Amy D. Nichols, Sujatha Sankaran, Adib A. Abla, Manish K. Aghi, Edward F. Chang, Shawn L. Hervey-Jumper, Sandeep Kunwar, Paul S. Larson, Michael T. Lawton, Philip A. Starr, Philip V. Theodosopoulos, Mitchel S. Berger, and Michael W. McDermott

OBJECTIVE

Surgical site infection (SSI) is a complication linked to increased costs and length of hospital stay. Prevention of SSI is important to reduce its burden on individual patients and the healthcare system. The authors aimed to assess the efficacy of preoperative chlorhexidine gluconate (CHG) showers on SSI rates following cranial surgery.

METHODS

In November 2013, a preoperative CHG shower protocol was implemented at the authors’ institution. A total of 3126 surgical procedures were analyzed, encompassing a time frame from April 2012 to April 2016. Cohorts before and after implementation of the CHG shower protocol were evaluated for differences in SSI rates.

RESULTS

The overall SSI rate was 0.6%. No significant differences (p = 0.11) were observed between the rate of SSI of the 892 patients in the preimplementation cohort (0.2%) and that of the 2234 patients in the postimplementation cohort (0.8%). Following multivariable analysis, implementation of preoperative CHG showers was not associated with decreased SSI (adjusted OR 2.96, 95% CI 0.67–13.1; p = 0.15).

CONCLUSIONS

This is the largest study, according to sample size, to examine the association between CHG showers and SSI following craniotomy. CHG showers did not significantly alter the risk of SSI after a cranial procedure.

Restricted access

Jacob S. Young, Andrew J. Gogos, Matheus P. Pereira, Ramin A. Morshed, Jing Li, Matthew J. Barkovich, Shawn L. Hervey-Jumper, and Mitchel S. Berger

OBJECTIVE

Tumor proximity to the ventricle and ventricular entry (VE) during surgery have both been associated with worse prognoses; however, the interaction between these two factors is poorly understood. Given the benefit of maximal tumor resection, it is imperative for surgical planning and technique to know if VE has negative consequences for patient survival and tumor dissemination.

METHODS

The University of California, San Francisco tumor registry was searched for patients with newly diagnosed and recurrent supratentorial glioblastoma (GBM) who underwent resection by the senior author between 2013 and 2018. Tumor location with respect to the subventricular zone (SVZ), size, and extent of resection were assessed using pre- and postoperative imaging. VE was determined by postoperative imaging and/or the operative report.

RESULTS

In this 200-patient cohort of newly diagnosed and recurrent GBM, 26.5% of patients had VE during resection. Patients with VE were more likely to have preexisting subependymal disease (41.5% vs 15.0%, p < 0.001). Comparing patients with VE to those without VE, there was no difference in the rates of postoperative hydrocephalus (1.9% vs 4.8%, p = 0.36), ventriculoperitoneal shunting (0% vs 3.4%, p = 0.17), pseudomeningoceles (7.5% vs 5.4%, p = 0.58), or subdural hematomas (11.3% vs 3.4%, p = 0.07). Importantly, rates of subsequent leptomeningeal disease (7.5% vs 10.2%, p = 0.57) and distant parenchymal recurrence (17.0% vs 23.1%, p = 0.35) were not different between the groups. Newly diagnosed patients with tumors contacting the SVZ (type I or II) had worse survival than patients with tumors that did not contact the SVZ (type III or IV) (1.27 vs 1.84 years, p = 0.014, HR 1.8, 95% CI 1.08–3.03), but VE was not associated with worse survival in these patients with high-risk SVZ type I and II tumors (1.15 vs 1.68 years, p = 0.151, HR 0.59, 95% CI 0.26–1.34).

CONCLUSIONS

VE was well tolerated, with postoperative complications being rare events. There was no increase in leptomeningeal spread or distant parenchymal recurrence in patients with VE. Finally, although survival was worse for patients with preoperative subependymal disease, VE did not change survival for patients with tumors contacting the ventricle. Therefore, VE during GBM resection is not associated with adverse patient outcomes and should be used by surgeons to enhance extent of resection.

CLASSIFICATION OF EVIDENCE Type of question: therapeutic; study design: retrospective cohort; evidence: class II.

Free access

Praveen V. Mummaneni, John F. Burke, Andrew K. Chan, Julie Ann Sosa, Errol P. Lobo, Valli P. Mummaneni, Sheila Antrum, Sigurd H. Berven, Michael S. Conte, Sarah B. Doernberg, Andrew N. Goldberg, Christopher P. Hess, Steven W. Hetts, S. Andrew Josephson, Maureen P. Kohi, C. Benjamin Ma, Vaikom S. Mahadevan, Annette M. Molinaro, Andrew H. Murr, Sirisha Narayana, John P. Roberts, Marshall L. Stoller, Philip V. Theodosopoulos, Thomas P. Vail, Sandra Wienholz, Michael A. Gropper, Adrienne Green, and Mitchel S. Berger

OBJECTIVE

During the COVID-19 pandemic, quaternary-care facilities continue to provide care for patients in need of urgent and emergent invasive procedures. Perioperative protocols are needed to streamline care for these patients notwithstanding capacity and resource constraints.

METHODS

A multidisciplinary panel was assembled at the University of California, San Francisco, with 26 leaders across 10 academic departments, including 7 department chairpersons, the chief medical officer, the chief operating officer, infection control officers, nursing leaders, and resident house staff champions. An epidemiologist, an ethicist, and a statistician were also consulted. A modified two-round, blinded Delphi method based on 18 agree/disagree statements was used to build consensus. Significant disagreement for each statement was tested using a one-sided exact binomial test against an expected outcome of 95% consensus using a significance threshold of p < 0.05. Final triage protocols were developed with unblinded group-level discussion.

RESULTS

Overall, 15 of 18 statements achieved consensus in the first round of the Delphi method; the 3 statements with significant disagreement (p < 0.01) were modified and iteratively resubmitted to the expert panel to achieve consensus. Consensus-based protocols were developed using unblinded multidisciplinary panel discussions. The final algorithms 1) quantified outbreak level, 2) triaged patients based on acuity, 3) provided a checklist for urgent/emergent invasive procedures, and 4) created a novel scoring system for the allocation of personal protective equipment. In particular, the authors modified the American College of Surgeons three-tiered triage system to incorporate more urgent cases, as are often encountered in neurosurgery and spine surgery.

CONCLUSIONS

Urgent and emergent invasive procedures need to be performed during the COVID-19 pandemic. The consensus-based protocols in this study may assist healthcare providers to optimize perioperative care during the pandemic.

Free access

Andrew J. Gogos, Jacob S. Young, Matheus P. Pereira, Ramin A. Morshed, Matthew B. Potts, Shawn L. Hervey-Jumper, and Mitchel S. Berger

OBJECTIVE

Although most patients with low-grade glioma (LGG) present after a seizure, a small proportion is diagnosed after neuroimaging is performed for a sign or symptom unrelated to the tumor. While these tumors invariably grow, some surgeons argue for a watchful waiting approach. Here, the authors report on their experience in the surgical treatment of patients with incidental LGG (iLGG) and describe the neurological outcomes, survival, and complications.

METHODS

Relevant cases were identified from a prospective registry of patients undergoing glioma resection at the University of California, San Francisco, between 1997 and 2019. Cases were considered iLGG when the lesion was noted on imaging performed for a reason unrelated to the tumor. Demographic, clinical, pathological, and imaging data were extracted from the electronic medical record. Tumor volumes, growth, and extent of resection were calculated from pre- and postoperative volumetric FLAIR sequences.

RESULTS

One hundred thirteen of 657 (17.2%) first-time resections for LGG were for incidental lesions. The most common reasons for the discovery of an iLGG were headaches (without mass effect, 34.5%) or trauma (16.8%). Incidental tumors were no different from symptomatic lesions in terms of laterality or location, but they were significantly smaller (22.5 vs 57.5 cm3, p < 0.0001). There was no difference in diagnosis between patients with iLGG and those with symptomatic LGG (sLGG), incorporating both molecular and pathological data. The median preoperative observation time for iLGG was 3.1 months (range 1 month–12 years), and there was a median growth rate of 3.9 cm3/year. Complete resection of the FLAIR abnormality was achieved in 57% of patients with incidental lesions but only 23.8% of symptomatic lesions (p < 0.001), and the residual volumes were smaller for iLGGs (2.9 vs 13.5 cm3, p < 0.0001). Overall survival was significantly longer for patients with incidental tumors (median survival not reached for patients with iLGG vs 14.6 years for those with sLGG, p < 0.0001). There was a 4.4% rate of neurological deficits at 6 months.

CONCLUSIONS

The authors present the largest cohort of iLGGs. Patient age, tumor location, and molecular genetics were not different between iLGGs and sLGGs. Incidental tumors were smaller, a greater extent of resection could be achieved, and overall survival was improved compared to those for patients with sLGG. Operative morbidity and rates of neurological deficit were acceptably low; thus, the authors advocate upfront surgical intervention aimed at maximal safe resection for these incidentally discovered lesions.