Browse

You are looking at 1 - 4 of 4 items for

  • Refine by Access: all x
  • By Author: Akram, Harith x
  • By Author: Akram, Harith x
  • By Author: Hariz, Marwan x
  • By Author: Hariz, Marwan x
Clear All
Restricted access

Clinical outcomes after MRI connectivity–guided radiofrequency thalamotomy for tremor

Thomas Wirth, Taco Goedemans, Ali Rajabian, Viswas Dayal, Hazem Abuhusain, Nirosen Vijiaratnam, Dilan Athauda, Marwan Hariz, Thomas Foltynie, Patricia Limousin, Harith Akram, and Ludvic Zrinzo

OBJECTIVE

Radiofrequency thalamotomy (RF-T) is an established treatment for refractory tremor. It is unclear whether connectivity-guided targeting strategies could further augment outcomes. The aim of this study was to evaluate the efficacy and safety of MRI connectivity–guided RF-T in severe tremor.

METHODS

Twenty-one consecutive patients with severe tremor (14 with essential tremor [ET], 7 with Parkinson’s disease [PD]) underwent unilateral RF-T at a single institution between 2017 and 2020. Connectivity-derived thalamic segmentation was used to guide targeting. Changes in the Fahn-Tolosa-Marin Rating Scale (FTMRS) were recorded in treated and nontreated hands as well as procedure-related side effects.

RESULTS

Twenty-three thalamotomies were performed (with 2 patients receiving a repeated intervention). The mean postoperative assessment time point was 14.1 months. Treated-hand tremor scores improved by 63.8%, whereas nontreated-hand scores deteriorated by 10.1% (p < 0.01). Total FTMRS scores were significantly better at follow-up compared with baseline (mean 34.7 vs 51.7, p = 0.016). Baseline treated-hand tremor severity (rho = 0.786, p < 0.01) and total FTMRS score (rho = 0.64, p < 0.01) best correlated with tremor improvement. The most reported side effect was mild gait ataxia (n = 11 patients).

CONCLUSIONS

RF-T guided by connectivity-derived segmentation is a safe and effective option for severe tremor in both PD and ET.

Free access

Accuracy, precision, and safety of stereotactic, frame-based, intraoperative MRI-guided and MRI-verified deep brain stimulation in 650 consecutive procedures

Ali Rajabian, Saman Vinke, Joseph Candelario-Mckeown, Catherine Milabo, Maricel Salazar, Abdul Karim Nizam, Nadia Salloum, Jonathan Hyam, Harith Akram, Eileen Joyce, Thomas Foltynie, Patricia Limousin, Marwan Hariz, and Ludvic Zrinzo

OBJECTIVE

Suboptimal lead placement is one of the most common indications for deep brain stimulation (DBS) revision procedures. Confirming lead placement in relation to the visible anatomical target with dedicated stereotactic imaging before terminating the procedure can mitigate this risk. In this study, the authors examined the accuracy, precision, and safety of intraoperative MRI (iMRI) to both guide and verify lead placement during frame-based stereotactic surgery.

METHODS

A retrospective analysis of 650 consecutive DBS procedures for targeting accuracy, precision, and perioperative complications was performed. Frame-based lead placement took place in an operating room equipped with an MRI machine using stereotactic images to verify lead placement before removing the stereotactic frame. Immediate lead relocation was performed when necessary. Systematic analysis of the targeting error was calculated.

RESULTS

Verification of 1201 DBS leads with stereotactic MRI was performed in 643 procedures and with stereotactic CT in 7. The mean ± SD of the final targeting error was 0.9 ± 0.3 mm (range 0.1–2.3 mm). Anatomically acceptable lead placement was achieved with a single brain pass for 97% (n = 1164) of leads; immediate intraoperative relocation was performed in 37 leads (3%) to obtain satisfactory anatomical placement. General anesthesia was used in 91% (n = 593) of the procedures. Hemorrhage was noted after 4 procedures (0.6%); 3 patients (0.4% of procedures) presented with transient neurological symptoms, and 1 experienced delayed cognitive decline. Two bleeds coincided with immediate relocation (2 of 37 leads, 5.4%), which contrasts with hemorrhage in 2 (0.2%) of 1164 leads implanted on the first pass (p = 0.0058). Three patients had transient seizures in the postoperative period. The seizures coincided with hemorrhage in 2 of these patients and with immediate lead relocation in the other. There were 21 infections (3.2% of procedures, 1.5% in 3 months) leading to hardware removal. Delayed (> 3 months) retargeting of 6 leads (0.5%) in 4 patients (0.6% of procedures) was performed because of suboptimal stimulation benefit. There were no MRI-related complications, no permanent motor deficits, and no deaths.

CONCLUSIONS

To the authors’ knowledge, this is the largest series reporting the use of iMRI to guide and verify lead location during DBS surgery. It demonstrates a high level of accuracy, precision, and safety. Significantly higher hemorrhage was encountered when multiple brain passes were required for lead implantation, although none led to permanent deficit. Meticulous audit and calibration can improve precision and maximize safety.

Free access

Letter to the Editor. ClearPoint versus frame-based MRI-guided and MRI-verified deep brain stimulation

Ludvic Zrinzo, Harith Akram, and Marwan Hariz

Restricted access

Changing of the guard: reducing infection when replacing neural pacemakers

Joshua Pepper, Lara Meliak, Harith Akram, Jonathan Hyam, Catherine Milabo, Joseph Candelario, Thomas Foltynie, Patricia Limousin, Carmel Curtis, Marwan Hariz, and Ludvic Zrinzo

OBJECTIVE

Infection of deep brain stimulation (DBS) hardware has a significant impact on patient morbidity. Previous experience suggests that infection rates appear to be higher after implantable pulse generator (IPG) replacement surgery than after the de novo DBS procedure. In this study the authors examine the effect of a change in practice during DBS IPG replacements at their institution.

METHODS

Starting in January 2012, patient screening for methicillin-resistant Staphylococcus aureus (MRSA) and, and where necessary, eradication was performed prior to elective DBS IPG change. Moreover, topical vancomycin was placed in the IPG pocket during surgery. The authors then prospectively examined the infection rate in patients undergoing DBS IPG replacement at their center over a 3-year period with at least 9 months of follow-up.

RESULTS

The total incidence of infection in this prospective consecutive series of 101 IPG replacement procedures was 0%, with a mean follow-up duration of 24 ± 11 months. This was significantly lower than the authors' previously published historical control group, prior to implementing the change in practice, where the infection rate for IPG replacement was 8.5% (8/94 procedures; p = 0.003).

CONCLUSIONS

This study suggests that a change in clinical practice can significantly lower infection rates in patients undergoing DBS IPG replacement. These simple measures can minimize unnecessary surgery, loss of benefit from chronic stimulation, and costly hardware replacement, further improving the cost efficacy of DBS therapies.