Robot-assisted implantation of a microelectrode array in the occipital lobe as a visual prosthesis: technical note

Alessandra Rocca Department of Neurosurgery, Alicante General University Hospital, Alicante Institute of Health and Biomedical Research (ISABIAL), Alicante, Spain;
Department of Medicine and Surgery, University of Milan Bicocca, Milan, Italy;

Search for other papers by Alessandra Rocca in
Current site
Google Scholar
PubMed
Close
 MD
,
Christian Lehner Department of Neurosurgery, Alicante General University Hospital, Alicante Institute of Health and Biomedical Research (ISABIAL), Alicante, Spain;
Department of Neurosurgery, Medical University Graz, Austria;

Search for other papers by Christian Lehner in
Current site
Google Scholar
PubMed
Close
 MD
,
Emmanuel Wafula-Wekesa Department of Neurosurgery, Alicante General University Hospital, Alicante Institute of Health and Biomedical Research (ISABIAL), Alicante, Spain;
Department of Neurosurgery, Tenwek Hospital, Bomet, Kenya;

Search for other papers by Emmanuel Wafula-Wekesa in
Current site
Google Scholar
PubMed
Close
 MBChB
,
Enrique Luna Department of Neurosurgery, Elche General University Hospital, Alicante, Spain

Search for other papers by Enrique Luna in
Current site
Google Scholar
PubMed
Close
 MD
,
Víctor Fernández-Cornejo Department of Neurosurgery, Alicante General University Hospital, Alicante Institute of Health and Biomedical Research (ISABIAL), Alicante, Spain;

Search for other papers by Víctor Fernández-Cornejo in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Javier Abarca-Olivas Department of Neurosurgery, Alicante General University Hospital, Alicante Institute of Health and Biomedical Research (ISABIAL), Alicante, Spain;

Search for other papers by Javier Abarca-Olivas in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Cristina Soto-Sánchez Instituto de Bioingeniería, University Miguel Hernández, CIBER-BBN, Elche, Alicante, Spain; and

Search for other papers by Cristina Soto-Sánchez in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Eduardo Fernández-Jover Instituto de Bioingeniería, University Miguel Hernández, CIBER-BBN, Elche, Alicante, Spain; and

Search for other papers by Eduardo Fernández-Jover in
Current site
Google Scholar
PubMed
Close
 MD, PhD
, and
Pablo González-López Department of Neurosurgery, Alicante General University Hospital, Alicante Institute of Health and Biomedical Research (ISABIAL), Alicante, Spain;

Search for other papers by Pablo González-López in
Current site
Google Scholar
PubMed
Close
 MD, PhD
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $536.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $636.00
USD  $45.00
USD  $536.00
USD  $636.00
Print or Print + Online Sign in

The prospect of direct interaction between the brain and computers has been investigated in recent decades, revealing several potential applications. One of these is sight restoration in profoundly blind people, which is based on the ability to elicit visual perceptions while directly stimulating the occipital cortex. Technological innovation has led to the development of microelectrodes implantable on the brain surface. The feasibility of implanting a microelectrode on the visual cortex has already been shown in animals, with promising results. Current research has focused on the implantation of microelectrodes into the occipital brain of blind volunteers. The technique raises several technical challenges. In this technical note, the authors suggest a safe and effective approach for robot-assisted implantation of microelectrodes in the occipital lobe for sight restoration.

ABBREVIATIONS

BCI = brain-computer interface; EEG = electroencephalography; MEA = microelectrode array; TMS = transcranial magnetic stimulation; UEA = Utah electrode array.
  • Collapse
  • Expand
  • 1

    Vidal JJ. Toward direct brain-computer communication. Annu Rev Biophys Bioeng. 1973;2:157180.

  • 2

    Zhao ZP, Nie C, Jiang CT, et al. Modulating brain activity with invasive brain-computer interface: a narrative review. Brain Sci. 2023;13(1):134.

  • 3

    Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM. Brain-computer interfaces for communication and control. Clin Neurophysiol. 2002;113(6):767791.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Birbaumer N, Ghanayim N, Hinterberger T, et al. A spelling device for the paralysed. Nature. 1999;398(6725):297298.

  • 5

    Hramov AE, Maksimenko VA, Pisarchik AN. Physical principles of brain–computer interfaces and their applications for rehabilitation, robotics and control of human brain states. Phys Rep. 2021;918:1133.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Fang B, Ding W, Sun F, et al. Brain-computer interface integrated with augmented reality for human-robot interaction. IEEE Trans Cogn Dev Syst. 2022;1:1.

  • 7

    Colachis SC IV, Dunlap CF, Annetta NV, Tamrakar SM, Bockbrader MA, Friedenberg DA. Long-term intracortical microelectrode array performance in a human: a 5 year retrospective analysis. J Neural Eng. 2021;18(4):0460d7.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Lorach H, Galvez A, Spagnolo V, et al. Walking naturally after spinal cord injury using a brain–spine interface. Nature. 2023;618(7963):126133.

  • 9

    Luo YHL, da Cruz L. The Argus® II Retinal Prosthesis System. Prog Retin Eye Res. 2016;50:89107.

  • 10

    Lozano A, Suárez JS, Soto-Sánchez C, et al. Neurolight: a deep learning neural interface for cortical visual prostheses. Int J Neural Syst. 2020;30(9):2050045.

  • 11

    Najarpour Foroushani A, Pack CC, Sawan M. Cortical visual prostheses: from microstimulation to functional percept. J Neural Eng. 2018;15(2):021005.

  • 12

    Niketeghad S, Pouratian N. Brain machine interfaces for vision restoration: the current state of cortical visual prosthetics. Neurotherapeutics. 2019;16(1):134143.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Bosking WH, Beauchamp MS, Yoshor D. Electrical stimulation of visual cortex: relevance for the development of visual cortical prosthetics. Annu Rev Vis Sci. 2017;3(1):141166.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Granley J, Riedel A, Beyeler M. Adapting brain-like neural networks for modeling cortical visual prostheses. arXiv. Preprint posted online September 27, 2022. doi:10.48550/arXiv.2209.13561

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Fernández E, Normann RA. CORTIVIS approach for an intracortical visual prostheses. In: Gabel VP. Artificial Vision: A Clinical Guide. Springer; 2016:191-201.

  • 16

    Schmidt EM, Bak MJ, Hambrecht FT, Kufta CV, O’Rourke DK, Vallabhanath P. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex. Brain. 1996;119(Pt 2):507-522.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Self MW, Jeurissen D, van Ham AF, van Vugt B, Poort J, Roelfsema PR. The segmentation of proto-objects in the monkey primary visual cortex. Curr Biol. 2019;29(6):10191029.e4.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Joshi-Imre A, Black BJ, Abbott J, et al. Chronic recording and electrochemical performance of amorphous silicon carbide-coated Utah electrode arrays implanted in rat motor cortex. J Neural Eng. 2019;16(4):046006.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Warren DJ, Fernandez E, Normann RA. High-resolution two-dimensional spatial mapping of cat striate cortex using a 100-microelectrode array. Neuroscience. 2001;105(1):1931.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Fernández E, Alfaro A, Soto-Sánchez C, et al. Visual percepts evoked with an intracortical 96-channel microelectrode array inserted in human occipital cortex. J Clin Invest. 2021;131(23):e151331.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Grani F, Soto-Sanchez C, Farfan FD, et al. Time stability and connectivity analysis with an intracortical 96-channel microelectrode array inserted in human visual cortex. J Neural Eng. 2022;19(4):045001.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Grani F, Soto-Sánchez C, Fimia A, Fernández E. Toward a personalized closed-loop stimulation of the visual cortex: advances and challenges. Front Cell Neurosci. 2022;16:1034270.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Kramer DR, Kellis S, Barbaro M, et al. Technical considerations for generating somatosensation via cortical stimulation in a closed-loop sensory/motor brain-computer interface system in humans. J Clin Neurosci. 2019;63:116121.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Tolstosheeva E, Gordillo-González V, Biefeld V, et al. A multi-channel, flex-rigid ECoG microelectrode array for visual cortical interfacing. Sensors (Basel). 2015;15(1):832854.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Suner S, Fellows MR, Vargas-Irwin C, Nakata GK, Donoghue JP. Reliability of signals from a chronically implanted, silicon-based electrode array in non-human primate primary motor cortex. IEEE Trans Neural Syst Rehabil Eng. 2005;13(4):524541.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    House PA, MacDonald JD, Tresco PA, Normann RA. Acute microelectrode array implantation into human neocortex: preliminary technique and histological considerations. Neurosurg Focus. 2006;20(5):E4.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Campbell PK, Jones KE, Huber RJ, Horch KW, Normann RA. A silicon-based, three-dimensional neural interface: manufacturing processes for an intracortical electrode array. IEEE Trans Biomed Eng. 1991;38(8):758768.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Fernandez E, Alfaro A, Tormos JM, et al. Mapping of the human visual cortex using image-guided transcranial magnetic stimulation. Brain Res Brain Res Protoc. 2002;10(2):115124.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Wilms M, Eickhoff SB, Hömke L, et al. Comparison of functional and cytoarchitectonic maps of human visual areas V1, V2, V3d, V3v, and V4(v). Neuroimage. 2010;49(2):1171-1179.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Benson NC, Butt OH, Datta R, Radoeva PD, Brainard DH, Aguirre GK. The retinotopic organization of striate cortex is well predicted by surface topology. Curr Biol. 2012;22(21):20812085.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Mazur-Hart DJ, Yaghi NK, Shahin MN, Raslan AM. Stealth Autoguide for robotic-assisted laser ablation for lesional epilepsy: illustrative case. J Neurosurg Case Lessons. 2022;3(6):CASE21556.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Brandman D, Hong M, Clarke DB. Preclinical evaluation of the Stealth Autoguide robotic guidance device for stereotactic cranial surgery: a human cadaveric study. Stereotact Funct Neurosurg. 2021;99(4):343350.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Rousche PJ, Normann RA. A method for pneumatically inserting an array of penetrating electrodes into cortical tissue. Ann Biomed Eng. 1992;20(4):413422.

  • 34

    Hughes CL, Flesher SN, Weiss JM, et al. Neural stimulation and recording performance in human sensorimotor cortex over 1500 days. J Neural Eng. 2021;18(4):045012.

  • 35

    Flesher SN, Downey JE, Weiss JM, et al. A brain-computer interface that evokes tactile sensations improves robotic arm control. Science. 2021;372(6544):831836.

  • 36

    Collinger JL, Wodlinger B, Downey JE, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013;381(9866):557564.

  • 37

    Hochberg LR, Bacher D, Jarosiewicz B, et al. Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature. 2012;485(7398):372375.

  • 38

    Fernandez E, Alfaro A, Toledano R, Albisua J, García A. Perceptions elicited by electrical stimulation of human visual cortex. Invest Ophthalmol Vis Sci. 2015;56(7):777.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Mégevand P, Woodtli A, Yulzari A, et al. Surgical training for the implantation of neocortical microelectrode arrays using a formaldehyde-fixed human cadaver model. J Vis Exp. 2017;(129):56584.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Jiang H, Wang R, Zheng Z, et al. Short report: surgery for implantable brain-computer interface assisted by robotic navigation system. Acta Neurochir (Wien). 2022;164(9):22992302.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Rosenfeld JV, Wong YT, Yan E, et al. Tissue response to a chronically implantable wireless intracortical visual prosthesis (Gennaris array). J Neural Eng. 2020;17(4):046001.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Barbruni GL, Motto Ros P, Demarchi D, Carrara S, Ghezzi D. Ultra-miniaturised CMOS current driver for wireless biphasic intracortical microstimulation. 11th International Conference on Modern Circuits and Systems Technologies, MOCAST 2022. Published online June 8, 2022. doi:10.1109/mocast54814.2022.9837681

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Wilson MN, Thunemann M, Liu X, et al. Multimodal monitoring of human cortical organoids implanted in mice reveal functional connection with visual cortex. Nat Commun. 2022;13(1):7945.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Zeng Q, Li XJ, Zhang S, Deng C, Wu T. Think big, see small—a review of nanomaterials for neural interfaces. Nano Select. 2021;3(5):903918.

  • 45

    Qiang Y, Artoni P, Seo KJ, et al. Transparent arrays of bilayer-nanomesh microelectrodes for simultaneous electrophysiology and two-photon imaging in the brain. Sci Adv. 2018;4(9):eaat0626.

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1380 1380 76
Full Text Views 140 140 5
PDF Downloads 134 134 7
EPUB Downloads 0 0 0