Novel approaches to targeting gliomas at the leading/cutting edge

Alexander J. SchupperDepartment of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York; and

Search for other papers by Alexander J. Schupper in
Current site
Google Scholar
PubMed
Close
 MD
and
Constantinos G. HadjipanayisDepartment of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania

Search for other papers by Constantinos G. Hadjipanayis in
Current site
Google Scholar
PubMed
Close
 MD, PhD
View More View Less
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $525.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $525.00
USD  $624.00
Print or Print + Online Sign in

Despite decades of clinical trials and surgical advances, the most common high-grade glioma, glioblastoma (GBM), remains an incurable disease with a dismal prognosis. Because of its infiltrative nature, GBM almost always recurs at the margin, or leading edge, where tumor cells invade the surrounding brain parenchyma. This region of GBMs is unique, or heterogeneous, with its own microenvironment that is different from the tumor bulk or core. The GBM microenvironment at the margin contains immunosuppressive constituents as well as invasive and therapy-resistant tumor cells that are difficult to treat. In addition, the blood-brain barrier remains essentially intact at the infiltrative margin of tumors; further limiting the effectiveness of therapies. The invasive margin creates the greatest challenge for neurosurgeons when managing these tumors. The current paradigm of resection of GBM tumors mainly focuses on resection of the contrast-enhancing component of tumors, while GBMs extend well beyond the contrast enhancement. The infiltrative margin represents a unique challenge and opportunity for solutions that may overcome current limitations in tumor treatments. In this review of the current literature, the authors discuss the current and developing advances focused on the detection and treatment of GBM at the infiltrative margin and how this could impact patient outcomes.

ABBREVIATIONS

BBB = blood-brain barrier; CED = convection-enhanced delivery; EOR = extent of resection; FGS = fluorescence-guided surgery; GBM = glioblastoma; GSC = GBM stem cell; HGG = high-grade glioma; ICG = indocyanine green; LITT = laser interstitial thermal therapy; MHT = magnetic hyperthermia therapy; MNP = magnetic nanoparticle; OS = overall survival; PDT = photodynamic therapy; PFS = progression-free survival; PpIX = protoporphyrin IX; RCT = randomized controlled trial; SDT = sonodynamic therapy; TAM = tumor-associated macrophage; 5-ALA = 5-aminolevulinic acid.
  • Collapse
  • Expand
  • 1

    Lacroix M, Abi-Said D, Fourney DR, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95(2):190198.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    McGirt MJ, Chaichana KL, Gathinji M, et al. Independent association of extent of resection with survival in patients with malignant brain astrocytoma. J Neurosurg. 2009;110(1):156162.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Glenn CA, Baker CM, Conner AK, et al. An examination of the role of supramaximal resection of temporal lobe glioblastoma multiforme. World Neurosurg. 2018;114:e747e755.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Schupper AJ, Baron RB, Cheung W, et al. 5-Aminolevulinic acid for enhanced surgical visualization of high-grade gliomas: a prospective, multicenter study. J Neurosurg. 2022;136(6):15251534.

    • Search Google Scholar
    • Export Citation
  • 5

    Bonavia R, Inda MM, Cavenee WK, Furnari FB. Heterogeneity maintenance in glioblastoma: a social network. Cancer Res. 2011;71(12):40554060.

  • 6

    Lan X, Jörg DJ, Cavalli FMG, et al. Fate mapping of human glioblastoma reveals an invariant stem cell hierarchy. Nature. 2017;549(7671):227232.

  • 7

    Sloan AR, Lee-Poturalski C, Hoffman HC, et al. Glioma stem cells activate platelets by plasma-independent thrombin production to promote glioblastoma tumorigenesis. Neurooncol Adv. 2022;4(1):vdac172.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Petrecca K, Guiot MC, Panet-Raymond V, Souhami L. Failure pattern following complete resection plus radiotherapy and temozolomide is at the resection margin in patients with glioblastoma. J Neurooncol. 2013;111(1):1923.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Tamura R, Ohara K, Sasaki H, et al. Difference in immunosuppressive cells between peritumoral area and tumor core in glioblastoma. World Neurosurg. 2018;120:e601e610.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Fecci PE, Mitchell DA, Whitesides JF, et al. Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. Cancer Res. 2006;66(6):32943302.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115(1):38.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Brown TJ, Brennan MC, Li M, et al. Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol. 2016;2(11):14601469.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Certo F, Altieri R, Maione M, et al. FLAIRectomy in supramarginal resection of glioblastoma correlates with clinical outcome and survival analysis: a prospective, single institution, case series. Oper Neurosurg (Hagerstown). 2021;20(2):151163.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Karschnia P, Young JS, Dono A, et al. Prognostic validation of a new classification system for extent of resection in glioblastoma: a report of the RANO resect group. Neuro Oncol. Published online August 12, 2022. doi:10.1093/neuonc/noac193

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Dimou J, Beland B, Kelly J. Supramaximal resection: a systematic review of its safety, efficacy and feasibility in glioblastoma. J Clin Neurosci. 2020;72:328334.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Baron RB, Lakomkin N, Schupper AJ, et al. Postoperative outcomes following glioblastoma resection using a robot-assisted digital surgical exoscope: a case series. J Neurooncol. 2020;148(3):519527.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Della Pepa GM, Mattogno P, Menna G, et al. A comparative analysis with exoscope and optical microscope for intraoperative visualization and surgical workflow in 5-aminolevulinic acid-guided resection of high-grade gliomas. World Neurosurg. Published online November 15, 2022. 10.1016/j.wneu.2022.11.043

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Vogelbaum MA, Kroll D, Etame A, et al. A prospective validation study of the first 3D digital exoscope for visualization of 5-ALA-induced fluorescence in high-grade gliomas. World Neurosurg. 2021;149:e498e503.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392401.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Acerbi F, Broggi M, Eoli M, et al. Is fluorescein-guided technique able to help in resection of high-grade gliomas? Neurosurg Focus. 2014;36(2):E5.

  • 21

    Cho SS, Salinas R, De Ravin E, et al. Near-infrared imaging with second-window indocyanine green in newly diagnosed high-grade gliomas predicts gadolinium enhancement on postoperative magnetic resonance imaging. Mol Imaging Biol. 2020;22(5):14271437.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Schupper AJ, Yong RL, Hadjipanayis CG. The neurosurgeon’s armamentarium for gliomas: an update on intraoperative technologies to improve extent of resection. J Clin Med. 2021;10(2):236.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Eljamel S. 5-ALA Fluorescence image guided resection of glioblastoma multiforme: a meta-analysis of the literature. Int J Mol Sci. 2015;16(5):1044310456.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Lau D, Hervey-Jumper SL, Chang S, et al. A prospective Phase II clinical trial of 5-aminolevulinic acid to assess the correlation of intraoperative fluorescence intensity and degree of histologic cellularity during resection of high-grade gliomas. J Neurosurg. 2016;124(5):13001309.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Ross JL, Cooper LAD, Kong J, et al. 5-Aminolevulinic acid guided sampling of glioblastoma microenvironments identifies pro-survival signaling at infiltrative margins. Sci Rep. 2017;7(1):15593.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg. 2000;93(6):10031013.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Kairdolf BA, Bouras A, Kaluzova M, et al. Intraoperative spectroscopy with ultrahigh sensitivity for image-guided surgery of malignant brain tumors. Anal Chem. 2016;88(1):858867.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Wei L, Chen Y, Yin C, Borwege S, Sanai N, Liu JTC. Optical-sectioning microscopy of protoporphyrin IX fluorescence in human gliomas: standardization and quantitative comparison with histology. J Biomed Opt. 2017;22(4):46005.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Gessler F, Forster MT, Duetzmann S, et al. Combination of intraoperative magnetic resonance imaging and intraoperative fluorescence to enhance the resection of contrast enhancing gliomas. Neurosurgery. 2015;77(1):1622.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Neira JA, Ung TH, Sims JS, et al. Aggressive resection at the infiltrative margins of glioblastoma facilitated by intraoperative fluorescein guidance. J Neurosurg. 2017;127(1):111122.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Koc K, Anik I, Cabuk B, Ceylan S. Fluorescein sodium-guided surgery in glioblastoma multiforme: a prospective evaluation. Br J Neurosurg. 2008;22(1):99103.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Abramov I, Park MT, Gooldy TC, et al. Real-time intraoperative surgical telepathology using confocal laser endomicroscopy. Neurosurg Focus. 2022;52(6):E9.

  • 33

    Lee JYK, Thawani JP, Pierce J, et al. Intraoperative near-infrared optical imaging can localize gadolinium-enhancing gliomas during surgery. Neurosurgery. 2016;79(6):856871.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Patil CG, Walker DG, Miller DM, et al. Phase 1 safety, pharmacokinetics, and fluorescence imaging study of tozuleristide (BLZ-100) in adults with newly diagnosed or recurrent gliomas. Neurosurgery. 2019;85(4):E641E649.

    • Search Google Scholar
    • Export Citation
  • 35

    Warram JM, de Boer E, Korb M, et al. Fluorescence-guided resection of experimental malignant glioma using cetuximab-IRDye 800CW. Br J Neurosurg. 2015;29(6):850858.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Jermyn M, Desroches J, Mercier J, et al. Raman spectroscopy detects distant invasive brain cancer cells centimeters beyond MRI capability in humans. Biomed Opt Express. 2016;7(12):51295137.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Orringer DA, Pandian B, Niknafs YS, et al. Rapid intraoperative histology of unprocessed surgical specimens via fibre-laser-based stimulated Raman scattering microscopy. Nat Biomed Eng. 2017;1:113.

    • Search Google Scholar
    • Export Citation
  • 38

    Ji M, Orringer DA, Freudiger CW, et al. Rapid, label-free detection of brain tumors with stimulated Raman scattering microscopy. Sci Transl Med. 2013;5(201):201ra119.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Hollon TC, Pandian B, Adapa AR, et al. Near real-time intraoperative brain tumor diagnosis using stimulated Raman histology and deep neural networks. Nat Med. 2020;26(1):5258.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Jermyn M, Mok K, Mercier J, et al. Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med. 2015;7(274):274ra19.

  • 41

    Hadjipanayis CG. A multi-center study of intra-operative, in vivo, optics-based detection of brain tumor tissue using Raman spectroscopy and machine learning. Paper presented at: AANS Annual Meeting; April 29–May 2, 2022; Philadelphia, PA.

    • Search Google Scholar
    • Export Citation
  • 42

    Salehi A, Paturu MR, Patel B, et al. Therapeutic enhancement of blood-brain and blood-tumor barriers permeability by laser interstitial thermal therapy. Neurooncol Adv. 2020;2(1):vdaa071.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Butt OH, Zhou AY, Huang J, et al. A phase II study of laser interstitial thermal therapy combined with doxorubicin in patients with recurrent glioblastoma. Neurooncol Adv. 2021;3(1):vdab164.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Shin DH, Melnick KF, Tran DD, Ghiaseddin AP. In situ vaccination with laser interstitial thermal therapy augments immunotherapy in malignant gliomas. J Neurooncol. 2021;151(1):8592.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Skandalakis GP, Rivera DR, Rizea CD, et al. Hyperthermia treatment advances for brain tumors. Int J Hyperthermia. 2020;37(2):319.

  • 46

    Schupper AJ, Chanenchuk T, Racanelli A, Price G, Hadjipanayis CG. Laser hyperthermia: past, present, and future. Neuro Oncol. 2022;24(suppl 6):S42S51.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Sharma A, Jangam A, Low JYS, et al. Validation of a temperature-feedback controlled automated magnetic hyperthermia therapy device. Cancers (Basel). 2023;15(2):327.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48

    Maier-Hauff K, Ulrich F, Nestler D, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 2011;103(2):317324.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    Grauer O, Jaber M, Hess K, et al. Combined intracavitary thermotherapy with iron oxide nanoparticles and radiotherapy as local treatment modality in recurrent glioblastoma patients. J Neurooncol. 2019;141(1):8394.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50

    Meng Y, Reilly RM, Pezo RC, et al. MR-guided focused ultrasound enhances delivery of trastuzumab to Her2-positive brain metastases. Sci Transl Med. 2021;13(615):eabj4011.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51

    Kim C, Lim M, Woodworth GF, Arvanitis CD. The roles of thermal and mechanical stress in focused ultrasound-mediated immunomodulation and immunotherapy for central nervous system tumors. J Neurooncol. 2022;157(2):221236.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52

    Rincon-Torroella J, Khela H, Bettegowda A, Bettegowda C. Biomarkers and focused ultrasound: the future of liquid biopsy for brain tumor patients. J Neurooncol. 2022;156(1):3348.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53

    Coluccia D, Fandino J, Schwyzer L, et al. First noninvasive thermal ablation of a brain tumor with MR-guided focused ultrasound. J Ther Ultrasound. 2014;2:17.

  • 54

    Bunevicius A, McDannold NJ, Golby AJ. Focused ultrasound strategies for brain tumor therapy. Oper Neurosurg (Hagerstown). 2020;19(1):918.

  • 55

    Sanai N, Tien A, Tovmasyan A, et al. A first-in-human phase 0/1 trial of 5-aminolevulinic acid sonodynamic therapy (5-ALA SDT) in recurrent glioblastoma. Neuro Oncol. 2022;24(suppl 7):vii72vii73.

    • Search Google Scholar
    • Export Citation
  • 56

    Hirschberg H, Berg K, Peng Q. Photodynamic therapy mediated immune therapy of brain tumors. Neuroimmunol Neuroinflamm. 2018;5(7):27.

  • 57

    Vermandel M, Dupont C, Lecomte F, et al. Standardized intraoperative 5-ALA photodynamic therapy for newly diagnosed glioblastoma patients: a preliminary analysis of the INDYGO clinical trial. J Neurooncol. 2021;152(3):501514.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58

    Mahmoudi K, Garvey KL, Bouras A, et al. 5-aminolevulinic acid photodynamic therapy for the treatment of high-grade gliomas. J Neurooncol. 2019;141(3):595607.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59

    Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A. 1994;91(6):20762080.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60

    Weller M, Butowski N, Tran DD, et al. Rindopepimut with temozolomide for patients with newly diagnosed, EGFRvIII-expressing glioblastoma (ACT IV): a randomised, double-blind, international phase 3 trial. Lancet Oncol. 2017;18(10):13731385.

    • Search Google Scholar
    • Export Citation
  • 61

    Kunwar S, Prados MD, Chang SM, et al. Direct intracerebral delivery of cintredekin besudotox (IL13-PE38QQR) in recurrent malignant glioma: a report by the Cintredekin Besudotox Intraparenchymal Study Group. J Clin Oncol. 2007;25(7):837844.

    • Search Google Scholar
    • Export Citation
  • 62

    Mueller S, Polley MY, Lee B, et al. Effect of imaging and catheter characteristics on clinical outcome for patients in the PRECISE study. J Neurooncol. 2011;101(2):267277.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63

    Mineta T, Rabkin SD, Yazaki T, Hunter WD, Martuza RL. Attenuated multi-mutated herpes simplex virus-1 for the treatment of malignant gliomas. Nat Med. 1995;1(9):938943.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64

    Klatzmann D, Valéry CA, Bensimon G, et al. A phase I/II study of herpes simplex virus type 1 thymidine kinase "suicide" gene therapy for recurrent glioblastoma. Hum Gene Ther. 1998;9(17):25952604.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65

    Wen PY, Weller M, Lee EQ, et al. Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro Oncol. 2020;22(8):10731113.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66

    Chiocca EA, Yu JS, Lukas RV, et al. Regulatable interleukin-12 gene therapy in patients with recurrent high-grade glioma: results of a phase 1 trial. Sci Transl Med. 2019;11(505):eaaw5680.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67

    Wheeler LA, Manzanera AG, Bell SD, et al. Phase II multicenter study of gene-mediated cytotoxic immunotherapy as adjuvant to surgical resection for newly diagnosed malignant glioma. Neuro Oncol. 2016;18(8):11371145.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68

    Lang FF, Conrad C, Gomez-Manzano C, et al. Phase I study of DNX-2401 (Delta-24-RGD) oncolytic adenovirus: replication and immunotherapeutic effects in recurrent malignant glioma. J Clin Oncol. 2018;36(14):14191427.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69

    Westphal M, Ylä-Herttuala S, Martin J, et al. Adenovirus-mediated gene therapy with sitimagene ceradenovec followed by intravenous ganciclovir for patients with operable high-grade glioma (ASPECT): a randomised, open-label, phase 3 trial. Lancet Oncol. 2013;14(9):823833.

    • Search Google Scholar
    • Export Citation
  • 70

    Desjardins A, Gromeier M, Herndon JE II, et al. Recurrent glioblastoma treated with recombinant poliovirus. N Engl J Med. 2018;379(2):150161.

  • 71

    Todo T, Ino Y, Ohtsu H, Shibahara J, Tanaka M. A phase I/II study of triple-mutated oncolytic herpes virus G47∆ in patients with progressive glioblastoma. Nat Commun. 2022;13(1):4119.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72

    Cloughesy TF, Petrecca K, Walbert T, et al. Effect of vocimagene amiretrorepvec in combination with flucytosine vs standard of care on survival following tumor resection in patients with recurrent high-grade glioma: a randomized clinical trial. JAMA Oncol. 2020;6(12):19391946.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73

    Cloughesy TF, Brenner A, de Groot JF, et al. A randomized controlled phase III study of VB-111 combined with bevacizumab vs bevacizumab monotherapy in patients with recurrent glioblastoma (GLOBE). Neuro Oncol. 2020;22(5):705717.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74

    Gimple RC, Bhargava S, Dixit D, Rich JN. Glioblastoma stem cells: lessons from the tumor hierarchy in a lethal cancer. Genes Dev. 2019;33(11-12):591609.

    • Search Google Scholar
    • Export Citation
  • 75

    Prager BC, Bhargava S, Mahadev V, Hubert CG, Rich JN. Glioblastoma stem cells: driving resilience through chaos. Trends Cancer. 2020;6(3):223235.

  • 76

    Ribas A, Dummer R, Puzanov I, et al. Oncolytic virotherapy promotes intratumoral t cell infiltration and improves anti-PD-1 immunotherapy. Cell. 2018;174(4):10311032.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77

    Charles NA, Holland EC, Gilbertson R, Glass R, Kettenmann H. The brain tumor microenvironment. Glia. 2012;60(3):502514.

  • 78

    Hu F, Dzaye OD, Hahn A, et al. Glioma-derived versican promotes tumor expansion via glioma-associated microglial/macrophages Toll-like receptor 2 signaling. Neuro Oncol. 2015;17(2):200210.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79

    Buonfiglioli A, Hambardzumyan D. Macrophages and microglia: the cerberus of glioblastoma. Acta Neuropathol Commun. 2021;9(1):54.

  • 80

    Altieri R, Barbagallo D, Certo F, et al. Peritumoral microenvironment in high-grade gliomas: from FLAIRectomy to microglia-glioma cross-talk. Brain Sci. 2021;11(2):200.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 81

    Reardon DA, Gokhale PC, Klein SR, et al. Glioblastoma eradication following immune checkpoint blockade in an orthotopic, immunocompetent model. Cancer Immunol Res. 2016;4(2):124135.

    • Search Google Scholar
    • Export Citation
  • 82

    Reardon DA, Brandes AA, Omuro A, et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 2020;6(7):10031010.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 83

    Keenan TE, Burke KP, Van Allen EM. Genomic correlates of response to immune checkpoint blockade. Nat Med. 2019;25(3):389402.

  • 84

    Cloughesy TF, Mochizuki AY, Orpilla JR, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019;25(3):477486.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 85

    Brown CE, Alizadeh D, Starr R, et al. Regression of glioblastoma after chimeric antigen receptor T-cell therapy. N Engl J Med. 2016;375(26):25612569.

Metrics

All Time Past Year Past 30 Days
Abstract Views 680 680 495
Full Text Views 225 225 179
PDF Downloads 216 216 163
EPUB Downloads 0 0 0