Cost-effectiveness analysis of radiosurgical capsulotomy versus treatment as usual for treatment-resistant obsessive-compulsive disorder

View More View Less
  • 1 Department of Neurosurgery, Baylor College of Medicine, Houston, Texas;
  • | 2 Magellan Health, Frisco, Texas;
  • | 3 Department of Neurosurgery, Columbia University Irving Medical Center, New York, New York; and
  • | 4 Menninger Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, Texas
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $45.00
USD  $515.00
USD  $612.00
Print or Print + Online Sign in

OBJECTIVE

Stereotactic radiosurgical capsulotomy (SRS-C) is an effective neurosurgical option for patients with treatment-resistant obsessive-compulsive disorder (TROCD). Unlike other procedures such as deep brain stimulation and radiofrequency ablation, the cost-effectiveness of SRS-C for TROCD has not been investigated. The authors herein report the first cost-effectiveness analysis of SRS-C for TROCD.

METHODS

Using a decision analytic model, the authors compared the cost-effectiveness of SRS-C to treatment as usual (TAU) for TROCD. Treatment response and complication rates were derived from a review of relevant clinical trials. Published algorithms were used to convert Yale-Brown Obsessive Compulsive Scale scores into utility scores reflecting improvements in quality of life. Costs were approached from the healthcare sector perspective and were drawn from Medicare reimbursement rates and available healthcare economics data. A Monte Carlo simulation and probabilistic sensitivity analysis were performed to estimate the incremental cost-effectiveness ratio.

RESULTS

One hundred fifty-eight TROCD patients across 9 studies who had undergone SRS-C and had at least 36 months of follow-up were included in the model. Compared to TAU, SRS-C was more cost-effective, with an estimated incremental cost-effectiveness ratio of $28,960 per quality-adjusted life year (QALY) gained. Within the 3-year time horizon, net QALYs gained were greater in the SRS-C group than the TAU group by 0.27 (95% CI 0.2698–0.2702, p < 0.0001). At willingness-to-pay thresholds of $50,000 and $100,000 per QALY, the Monte Carlo simulation revealed that SRS-C was more cost-effective than TAU in 83% and 100% of iterations, respectively.

CONCLUSIONS

Compared to TAU, SRS-C for TROCD is more cost-effective under a range of possible cost and effectiveness values.

ABBREVIATIONS

CEA = cost-effectiveness analysis; CER = cost-effectiveness ratio; CPT = Current Procedural Terminology; DBS = deep brain stimulation; ET = essential tremor; ICER = incremental cost-effectiveness ratio; MC = Monte Carlo; OCD = obsessive-compulsive disorder; QALY = quality-adjusted life year; QOL = quality of life; SRS = stereotactic radiosurgery; SRS-C = stereotactic radiosurgical capsulotomy; SSRI = selective serotonin uptake inhibitor; TAU = treatment as usual; TN = trigeminal neuralgia; TROCD = treatment-resistant OCD; US = United States; WTP = willingness to pay; Y-BOCS = Yale-Brown Obsessive Compulsive Scale.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $515.00
USD  $612.00
  • 1

    Goodman WK, Price LH, Rasmussen SA, et al. The Yale-Brown Obsessive Compulsive Scale. II. Validity. Arch Gen Psychiatry. 1989;46(11):10121016.

  • 2

    Subramaniam M, Soh P, Vaingankar JA, Picco L, Chong SA. Quality of life in obsessive-compulsive disorder: impact of the disorder and of treatment. CNS Drugs. 2013;27(5):367383.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Ruscio AM, Stein DJ, Chiu WT, Kessler RC. The epidemiology of obsessive-compulsive disorder in the National Comorbidity Survey Replication. Mol Psychiatry. 2010;15(1):5363.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Pigott TA, Seay SM. A review of the efficacy of selective serotonin reuptake inhibitors in obsessive-compulsive disorder. J Clin Psychiatry. 1999;60(2):101106.

  • 5

    Öst LG, Havnen A, Hansen B, Kvale G. Cognitive behavioral treatments of obsessive-compulsive disorder. A systematic review and meta-analysis of studies published 1993-2014. Clin Psychol Rev. 2015;40:156169.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Fineberg NA, Gale TM. Evidence-based pharmacotherapy of obsessive-compulsive disorder. Int J Neuropsychopharmacol. 2005;8(1):107129.

  • 7

    Bloch MH, Landeros-Weisenberger A, Kelmendi B, Coric V, Bracken MB, Leckman JF. A systematic review: antipsychotic augmentation with treatment refractory obsessive-compulsive disorder. Mol Psychiatry. 2006;11(7):622632.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Pallanti S, Hollander E, Bienstock C, et al. Treatment non-response in OCD: methodological issues and operational definitions. Int J Neuropsychopharmacol. 2002;5(2):181191.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Fontenelle LF, Coutinho ES, Lins-Martins NM, Fitzgerald PB, Fujiwara H, Yücel M. Electroconvulsive therapy for obsessive-compulsive disorder: a systematic review. J Clin Psychiatry. 2015;76(7):949957.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Dos Santos-Ribeiro S, de Salles Andrade JB, Quintas JN, et al. A systematic review of the utility of electroconvulsive therapy in broadly defined obsessive-compulsive-related disorders. Prim Care Companion CNS Disord. 2018;20(5):18r02342.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Trevizol AP, Shiozawa P, Cook IA, et al. Transcranial magnetic stimulation for obsessive-compulsive disorder: an updated systematic review and meta-analysis. J ECT. 2016;32(4):262266.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Alonso P, Cuadras D, Gabriëls L, et al. Deep brain stimulation for obsessive-compulsive disorder: a meta-analysis of treatment outcome and predictors of response. PLoS One. 2015;10(7):e0133591.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Bais M, Figee M, Denys D. Neuromodulation in obsessive-compulsive disorder. Psychiatr Clin North Am. 2014;37(3):393413.

  • 14

    Kumar KK, Appelboom G, Lamsam L, et al. Comparative effectiveness of neuroablation and deep brain stimulation for treatment-resistant obsessive-compulsive disorder: a meta-analytic study. J Neurol Neurosurg Psychiatry. 2019;90(4):469473.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    McLaughlin NCR, Lauro PM, Patrick MT, et al. Magnetic resonance imaging-guided laser thermal ventral capsulotomy for intractable obsessive-compulsive disorder. Neurosurgery. 2021;88(6):11281135.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Brown LT, Mikell CB, Youngerman BE, Zhang Y, McKhann GM II, Sheth SA. Dorsal anterior cingulotomy and anterior capsulotomy for severe, refractory obsessive-compulsive disorder: a systematic review of observational studies. J Neurosurg. 2016;124(1):7789.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Miguel EC, Lopes AC, McLaughlin NCR, et al. Evolution of gamma knife capsulotomy for intractable obsessive-compulsive disorder. Mol Psychiatry. 2019;24(2):218240.

  • 18

    Leksell L. Stereotactic radiosurgery. J Neurol Neurosurg Psychiatry. 1983;46(9):797803.

  • 19

    Rylander G. Försök med gammakapsulotomi vid ångest- och tvångsneuroser. Lakartidningen. 1978;75(7):547549.

  • 20

    Lévêque M, Carron R, Régis J. Radiosurgery for the treatment of psychiatric disorders: a review. World Neurosurg. 2013;80(3):S32.e1S32.e9.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Ooms P, Blankers M, Figee M, et al. Cost-effectiveness of deep brain stimulation versus treatment as usual for obsessive-compulsive disorder. Brain Stimul. 2017;10(4):836842.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Moon W, Kim SN, Park S, Paek SH, Kwon JS. The cost-effectiveness of deep brain stimulation for patients with treatment-resistant obsessive-compulsive disorder. Medicine (Baltimore). 2017;96(27):e7397.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    Kumar KK, Bhati MT, Ravikumar VK, Ghanouni P, Stein SC, Halpern CH. MR-guided focused ultrasound versus radiofrequency capsulotomy for treatment-refractory obsessive-compulsive disorder: a cost-effectiveness threshold analysis. Front Neurosci. 2019;13:66.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Grutters JPC, Joore MA, van Der Horst F, Stokroos RJ, Anteunis LJC. Decision-analytic modeling to assist decision making in organizational innovation: the case of shared care in hearing aid provision. Health Serv Res. 2008;43(5 Pt 1):16621673.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Farris SG, McLean CP, van Meter PE, Simpson HB, Foa EB. Treatment response, symptom remission, and wellness in obsessive-compulsive disorder. J Clin Psychiatry. 2013;74(7):685690.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Garnaat SL, Boisseau CL, Yip A, et al. Predicting course of illness in patients with severe obsessive-compulsive disorder. J Clin Psychiatry. 2015;76(12):e1605e1610.

  • 27

    Weinstein MC, Siegel JE, Gold MR, Kamlet MS, Russell LB. Recommendations of the Panel on Cost-effectiveness in Health and Medicine. JAMA. 1996;276(15):12531258.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28

    Goodman WK, Price LH, Rasmussen SA, et al. The Yale-Brown Obsessive Compulsive Scale. I. Development, use, and reliability. Arch Gen Psychiatry. 1989;46(11):10061011.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Gregory ST, Kay B, Smith J, et al. Treatment-refractory obsessive-compulsive disorder in adults: a cost-effectiveness analysis of treatment strategies. J Clin Psychiatry. 2018;79(2):17m11552.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Kim DD, Silver MC, Kunst N, Cohen JT, Ollendorf DA, Neumann PJ. Perspective and costing in cost-effectiveness analysis, 1974–2018. Pharmacoeconomics. 2020;38(10):11351145.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    CMS physician fee schedule. Centers for Medicare & Medicaid Services. Accessed June 7, 2022. https://www.cms.gov/Medicare/Medicare-Fee-for-Service-Payment/PhysicianFeeSched

    • Search Google Scholar
    • Export Citation
  • 32

    Caruso JP, Moosa S, Fezeu F, Ramesh A, Sheehan JP. A cost comparative study of Gamma Knife radiosurgery versus open surgery for intracranial pathology. J Clin Neurosci. 2015;22(1):184188.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Gandhoke GS, Smith KJ, Niranjan A, Sekula RF, Lunsford LD. Comparing microvascular decompression with Gamma Knife radiosurgery for trigeminal neuralgia. a cost-effectiveness analysis. World Neurosurgery. 2019;125:207216.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Greenberg BD, Gabriels LA, Malone DA Jr, et al. Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience. Mol Psychiatry. 2010;15(1):6479.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Huff W, Lenartz D, Schormann M, et al. Unilateral deep brain stimulation of the nucleus accumbens in patients with treatment-resistant obsessive-compulsive disorder: outcomes after one year. Clin Neurol Neurosurg. 2010;112(2):137143.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Lee DJ, Dallapiazza RF, De Vloo P, et al. Inferior thalamic peduncle deep brain stimulation for treatment-refractory obsessive-compulsive disorder: a phase 1 pilot trial. Brain Stimul. 2019;12(2):344352.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Gold MR. Cost-Effectiveness in Health and Medicine. Oxford University Press;1996.

  • 38

    Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372(71):n71.

  • 39

    Rück C, Karlsson A, Steele JD, et al. Capsulotomy for obsessive-compulsive disorder: long-term follow-up of 25 patients. Arch Gen Psychiatry. 2008;65(8):914921.

  • 40

    Lopes AC, Greenberg BD, Norén G, et al. Treatment of resistant obsessive-compulsive disorder with ventral capsular/ventral striatal gamma capsulotomy: a pilot prospective study. J Neuropsychiatry Clin Neurosci. 2009;21(4):381392.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Kondziolka D, Flickinger JC, Hudak R. Results following gamma knife radiosurgical anterior capsulotomies for obsessive compulsive disorder. Neurosurgery. 2011;68(1):2833.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Sheehan JP, Patterson G, Schlesinger D, Xu Z. Gamma Knife surgery anterior capsulotomy for severe and refractory obsessive-compulsive disorder. J Neurosurg. 2013;119(5):11121118.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Lopes AC, Greenberg BD, Canteras MM, et al. Gamma ventral capsulotomy for obsessive-compulsive disorder: a randomized clinical trial. JAMA Psychiatry. 2014;71(9):10661076.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Rasmussen SA, Noren G, Greenberg BD, et al. Gamma ventral capsulotomy in intractable obsessive-compulsive disorder. Biol Psychiatry. 2018;84(5):355364.

  • 45

    Spatola G, Martinez-Alvarez R, Martínez-Moreno N, et al. Results of Gamma Knife anterior capsulotomy for refractory obsessive-compulsive disorder: results in a series of 10 consecutive patients. J Neurosurg. 2018;131(2):376383.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46

    Gupta A, Shepard MJ, Xu Z, et al. An International Radiosurgery Research Foundation multicenter retrospective study of gamma ventral capsulotomy for obsessive compulsive disorder. Neurosurgery. 2019;85(6):808816.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Peker S, Samanci MY, Yilmaz M, Sengoz M, Ulku N, Ogel K. Efficacy and safety of gamma ventral capsulotomy for treatment-resistant obsessive-compulsive disorder: a single-center experience. World Neurosurg. 2020;141:e941e952.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48

    Gatterbauer B, Hirschmann D, Eberherr N, et al. Toxicity and efficacy of Gamma Knife radiosurgery for brain metastases in melanoma patients treated with immunotherapy or targeted therapy—a retrospective cohort study. Cancer Med. 2020;9(11):40264036.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49

    Ravikumar VK, Parker JJ, Hornbeck TS, et al. Cost-effectiveness of focused ultrasound, radiosurgery, and DBS for essential tremor. Mov Disord. 2017;32(8):11651173.

  • 50

    Mitchell PM. The cost-effectiveness of what in health and care?. In: Schildmann J, Buch C, Zerth J, eds.Defining the Value of Medical Interventions: Normative and Empirical Challenges. Kohlhammer Verlag;2021.

    • Search Google Scholar
    • Export Citation
  • 51

    Pinckard-Dover H, Ward H, Foote KD. The decline of deep brain stimulation for obsessive-compulsive disorder following FDA humanitarian device exemption approval. Front Surg. 2021;8:642503.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52

    Stein SC. Cost-effectiveness research in neurosurgery: we can and we must. Neurosurgery. 2018;83(5):871878.

  • 53

    Eisen JL, Sibrava NJ, Boisseau CL, et al. Five-year course of obsessive-compulsive disorder: predictors of remission and relapse. J Clin Psychiatry. 2013;74(3):233239.

  • 54

    Fontenelle LF, Yücel M. A clinical staging model for obsessive-compulsive disorder: is it ready for prime time? EClinicalMedicine. 2019;7:6572.

  • 55

    Pomeraniec IJ, Ding D, Starke RM, et al. Delayed cyst formation after stereotactic radiosurgery for brain arteriovenous malformations. J Neurosurg. 2018;129(4):937946.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56

    Batistuzzo MC, Hoexter MQ, Taub A, et al. Visuospatial memory improvement after gamma ventral capsulotomy in treatment refractory obsessive-compulsive disorder patients. Neuropsychopharmacology. 2015;40(8):18371845.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57

    Keisler-Starkey K, Bunch LN. Health Insurance Coverage in the United States: 2020. U.S. Census Bureau; 2021.Accessed June 7, 2022. https://www.census.gov/content/dam/Census/library/publications/2021/demo/p60-274.pdf

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 561 561 561
Full Text Views 38 38 38
PDF Downloads 42 42 42
EPUB Downloads 0 0 0