Correlation of callosal angle at the splenium with gait and cognition in normal pressure hydrocephalus

Takaaki HattoriDepartments of Neurology and Neurological Science,

Search for other papers by Takaaki Hattori in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Masahiro OharaDepartments of Neurology and Neurological Science,

Search for other papers by Masahiro Ohara in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Tatsuhiko YuasaDepartment of Neurology, Kamagaya General Hospital, Kamagaya, Chiba; and

Search for other papers by Tatsuhiko Yuasa in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Reo AzumaDepartment of Neurology, Kanto Central Hospital, Setagaya-ku, Tokyo, Japan

Search for other papers by Reo Azuma in
Current site
Google Scholar
PubMed
Close
 MD
,
Qingmeng ChenDepartments of Neurology and Neurological Science,

Search for other papers by Qingmeng Chen in
Current site
Google Scholar
PubMed
Close
 MD
,
Ryoichi HanazawaClinical Biostatistics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo;

Search for other papers by Ryoichi Hanazawa in
Current site
Google Scholar
PubMed
Close
 MSc
,
Akihiro HirakawaClinical Biostatistics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo;

Search for other papers by Akihiro Hirakawa in
Current site
Google Scholar
PubMed
Close
 PhD
,
Satoshi OrimoDepartment of Neurology, Kanto Central Hospital, Setagaya-ku, Tokyo, Japan

Search for other papers by Satoshi Orimo in
Current site
Google Scholar
PubMed
Close
 MD, PhD
, and
Takanori YokotaDepartments of Neurology and Neurological Science,

Search for other papers by Takanori Yokota in
Current site
Google Scholar
PubMed
Close
 MD, PhD
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $525.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $525.00
USD  $624.00
Print or Print + Online Sign in

OBJECTIVE

Idiopathic normal pressure hydrocephalus (iNPH) is characterized by ventricular enlargement that deforms the corpus callosum, making the callosal angle (CA) small. The authors aimed to evaluate the clinical usefulness of the CA in different planes in iNPH.

METHODS

Forty patients with iNPH were included in the study. As a control group, 241 patients with other neurological diseases and 50 healthy controls were included. The subjects had been seen at the authors’ institutions from 2010 to 2020. The Timed Up and Go (TUG) test total time and Mini-Mental State Examination (MMSE) total score were evaluated. CAs were measured in the axial plane at the splenium and genu and in the coronal plane at the anterior commissure and posterior commissure by using 3-dimensional T1-weighted MR images. As other hydrocephalus parameters, the Evans index, frontal-occipital horn ratio, and third ventricular width were also measured in patients with iNPH. Associations between each CA or hydrocephalus parameter and clinical parameters were evaluated. The classification efficacy of each CA in differentiating between iNPH and other neurological diseases and healthy controls was evaluated.

RESULTS

The CA at the splenium, but no other hydrocephalus parameters, was correlated with TUG total time or MMSE total score in patients with iNPH. Receiver operating characteristic analysis showed that a CA of 71.1° at the splenium has 90.0% sensitivity and 89.0% specificity in discriminating iNPH from other neurological diseases and healthy controls. Probabilistic tractography analysis showed that neuronal fibers via the splenium connect the superior parietal lobules, temporal lobes, and occipital lobes.

CONCLUSIONS

The study results suggest that interhemispheric disconnections at the splenium are, at least in part, responsible for gait and cognitive disturbance in iNPH. The CA at the splenium is a unique morphological feature that correlates with gait and cognition in iNPH, and it is useful for discriminating iNPH from other neurological diseases and healthy controls.

ABBREVIATIONS

3DT1 = 3-dimensional T1-weighted; AC = anterior commissure; AD = Alzheimer’s disease; ADNI = Alzheimer’s Disease Neuroimaging Initiative; ALS = amyotrophic lateral sclerosis; CA = callosal angle; DLB = dementia with Lewy bodies; FAB = Frontal Assessment Battery; HC = healthy control; iNPH = idiopathic normal pressure hydrocephalus; MMSE = Mini-Mental State Examination; MPRAGE = magnetization-prepared rapid acquisition with gradient echo; MS = multiple sclerosis; PC = posterior commissure; PD = Parkinson’s disease; PDD = PD with dementia; ROC = receiver operating characteristic; TUG = Timed Up and Go; VIF = variance inflation factor.

Supplementary Materials

    • Supplementary Figs. 1-3 (PDF 798 KB)
  • Collapse
  • Expand
  • 1

    Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM. Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery. 2005;57(3 suppl):S4S16, ii-v.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Hattori T, Sato R, Aoki S, Yuasa T, Mizusawa H. Different patterns of fornix damage in idiopathic normal pressure hydrocephalus and Alzheimer disease. AJNR Am J Neuroradiol. 2012;33(2):274279.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Kitagaki H, Mori E, Ishii K, Yamaji S, Hirono N, Imamura T. CSF spaces in idiopathic normal pressure hydrocephalus: morphology and volumetry. AJNR Am J Neuroradiol. 1998;19(7):12771284.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Ishii K, Kanda T, Harada A, et al. Clinical impact of the callosal angle in the diagnosis of idiopathic normal pressure hydrocephalus. Eur Radiol. 2008;18(11):26782683.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Mantovani P, Albini-Riccioli L, Giannini G, et al. Anterior callosal angle: a new marker of idiopathic normal pressure hydrocephalus? World Neurosurg. 2020;139:e548e552.

    • Search Google Scholar
    • Export Citation
  • 6

    Park HJ, Kim JJ, Lee SK, et al. Corpus callosal connection mapping using cortical gray matter parcellation and DT-MRI. Hum Brain Mapp. 2008;29(5):503516.

  • 7

    Hofer S, Frahm J. Topography of the human corpus callosum revisited—comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage. 2006;32(3):989994.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Chan LL, Chen R, Li H, et al. The splenial angle: a novel radiological index for idiopathic normal pressure hydrocephalus. Eur Radiol. 2021;31(12):90869097.

    • Search Google Scholar
    • Export Citation
  • 9

    Yamada S, Ishikawa M, Miyajima M, et al. Timed up and go test at tap test and shunt surgery in idiopathic normal pressure hydrocephalus. Neurol Clin Pract. 2017;7(2):98108.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Nakajima M, Yamada S, Miyajima M, et al. Guidelines for Management of Idiopathic Normal Pressure Hydrocephalus (Third Edition): endorsed by the Japanese Society of Normal Pressure Hydrocephalus. Neurol Med Chir (Tokyo). 2021;61(2):6397.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30(12):15911601.

  • 12

    de Carvalho M, Dengler R, Eisen A, et al. Electrodiagnostic criteria for diagnosis of ALS. Clin Neurophysiol. 2008;119(3):497503.

  • 13

    Thompson AJ, Banwell BL, Barkhof F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol. 2018;17(2):162173.

  • 14

    McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34(7):939944.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Emre M, Aarsland D, Brown R, et al. Clinical diagnostic criteria for dementia associated with Parkinson’s disease. Mov Disord. 2007;22(12):16891707, 1837.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    McKeith IG, Boeve BF, Dickson DW, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89(1):88100.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Synek V, Reuben JR, Du Boulay GH. Comparing Evans’ index and computerized axial tomography in assessing relationship of ventricular size to brain size. Neurology. 1976;26(3):231233.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Folstein MF, Folstein SE, McHugh PR. "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12(3):189198.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Fazekas F, Chawluk JB, Alavi A, Hurtig HI, Zimmerman RA. MR signal abnormalities at 1.5 T in Alzheimer’s dementia and normal aging. AJR Am J Roentgenol. 1987;149(2):351356.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Podsiadlo D, Richardson S. The timed "Up & Go": a test of basic functional mobility for frail elderly persons. J Am Geriatr Soc. 1991;39(2):142148.

    • Search Google Scholar
    • Export Citation
  • 21

    Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671675.

  • 22

    O’Hayon BB, Drake JM, Ossip MG, Tuli S, Clarke M. Frontal and occipital horn ratio: a linear estimate of ventricular size for multiple imaging modalities in pediatric hydrocephalus. Pediatr Neurosurg. 1998;29(5):245249.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Tullberg M, Jensen C, Ekholm S, Wikkelsø C. Normal pressure hydrocephalus: vascular white matter changes on MR images must not exclude patients from shunt surgery. AJNR Am J Neuroradiol. 2001;22(9):16651673.

    • Search Google Scholar
    • Export Citation
  • 24

    Harrell FE Jr, Lee KL, Mark DB. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat Med. 1996;15(4):361387.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Virhammar J, Laurell K, Cesarini KG, Larsson EM. Increase in callosal angle and decrease in ventricular volume after shunt surgery in patients with idiopathic normal pressure hydrocephalus. J Neurosurg. 2018;130(1):130135.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Wu Y, Wang J, Zhang Y, et al. The neuroanatomical basis for posterior superior parietal lobule control lateralization of visuospatial attention. Front Neuroanat. 2016;10:32.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Tagaris GA, Kim SG, Strupp JP, Andersen P, Uğurbil K, Georgopoulos AP. Quantitative relations between parietal activation and performance in mental rotation. Neuroreport. 1996;7(3):773776.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Wolpert DM, Goodbody SJ, Husain M. Maintaining internal representations: the role of the human superior parietal lobe. Nat Neurosci. 1998;1(6):529533.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Danckert J, Goldberg L, Broderick C. Damage to superior parietal cortex impairs pointing in the sagittal plane. Exp Brain Res. 2009;195(2):183191.

  • 30

    Kase CS, Troncoso JF, Court JE, Tapia JF, Mohr JP. Global spatial disorientation. Clinico-pathologic correlations. J Neurol Sci. 1977;34(2):267278.

  • 31

    Tamura I, Kitagawa M, Otsuki M, Kikuchi S, Tashiro K, Dubois B. Pure topographical disorientation following a right forceps major of the splenium lesion: a case study. Neurocase. 2007;13(3):178184.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Hsieh CY, Huang HY, Liu KC, Chen KH, Hsu SJ, Chan CT. Subtask segmentation of timed up and go test for mobility assessment of perioperative total knee arthroplasty. Sensors (Basel). 2020;20(21):6302.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Virhammar J, Laurell K, Cesarini KG, Larsson EM. Preoperative prognostic value of MRI findings in 108 patients with idiopathic normal pressure hydrocephalus. AJNR Am J Neuroradiol. 2014;35(12):23112318.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Mantovani P, Giannini G, Milletti D, et al. Anterior callosal angle correlates with gait impairment and fall risk in iNPH patients. Acta Neurochir (Wien). 2021;163(3):759766.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Koyama T, Marumoto K, Domen K, Miyake H. White matter characteristics of idiopathic normal pressure hydrocephalus: a diffusion tensor tract-based spatial statistic study. Neurol Med Chir (Tokyo). 2013;53(9):601608.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Kanno S, Abe N, Saito M, et al. White matter involvement in idiopathic normal pressure hydrocephalus: a voxel-based diffusion tensor imaging study. J Neurol. 2011;258(11):19491957.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Hattingen E, Jurcoane A, Melber J, et al. Diffusion tensor imaging in patients with adult chronic idiopathic hydrocephalus. Neurosurgery. 2010;66(5):917924.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Hattori T, Ito K, Aoki S, et al. White matter alteration in idiopathic normal pressure hydrocephalus: tract-based spatial statistics study. AJNR Am J Neuroradiol. 2012;33(1):97103.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Khachiyants N, Kim KY. Mini-mental status exam mapping to the corresponding brain areas in dementia. Appl Technol Innov. 2012;7(2):5558.

    • Search Google Scholar
    • Export Citation
  • 40

    Fällmar D, Andersson O, Kilander L, Löwenmark M, Nyholm D, Virhammar J. Imaging features associated with idiopathic normal pressure hydrocephalus have high specificity even when comparing with vascular dementia and atypical parkinsonism. Fluids Barriers CNS. 2021;18(1):35.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Hattori T, Yuasa T, Aoki S, et al. Altered microstructure in corticospinal tract in idiopathic normal pressure hydrocephalus: comparison with Alzheimer disease and Parkinson disease with dementia. AJNR Am J Neuroradiol. 2011;32(9):16811687.

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1861 1861 1861
Full Text Views 179 179 179
PDF Downloads 165 165 165
EPUB Downloads 0 0 0