Targeting for stereotactic radiosurgical thalamotomy based on tremor treatment response

View More View Less
  • 1 Departments of Radiation Oncology,
  • | 2 Biostatistics, and
  • | 3 Neurosurgery, Vanderbilt University Medical Center, Nashville, Tennessee;
  • | 4 Department of Neurological Surgery, University of Louisville, Kentucky; and
  • | 5 Department of Neurology, Vanderbilt University Medical Center, Nashville, Tennessee
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

OBJECTIVE

Stereotactic radiosurgery (SRS) treats severe, medically refractory essential tremor and tremor-dominant Parkinson disease. However, the optimal target for SRS treatment within the thalamic ventral intermediate nucleus (VIM) is not clearly defined. This work evaluates the precision of the physician-selected VIM target, and determines the optimal SRS target within the VIM by correlation between early responders and nonresponders.

METHODS

Early responders and nonresponders were assessed retrospectively by Elements Basal Ganglia Atlas autocontouring of the VIM on the pre–SRS-treatment 1-mm slice thickness T1-weighted MRI and correlating the center of the post–SRS-treatment lesion. Using pre- and posttreatment diffusion tensor imaging, the fiber tracking package in the Elements software generated tremor-related tracts from autosegmented motor cortex, thalamus, red nucleus, and dentate nucleus. Autocontouring of the VIM was successful for all patients.

RESULTS

Among 23 patients, physician-directed SRS targets had a medial–lateral target range from +2.5 mm to −2.0 mm from the VIM center. Relative to the VIM center, the SRS isocenter target was 0.7–0.9 mm lateral for 6 early responders and 0.9–1.1 mm medial for 4 nonresponders (p = 0.019), and without differences in the other dimensions: 0.2 mm posterior and 0.6 mm superior. Dose–volume histogram analyses for the VIM had no significant differences between responders and nonresponders between 20 Gy and 140 Gy, mean or maximum dose, and dose to small volumes. Tractography data was obtained for 4 patients.

CONCLUSIONS

For tremor control in early responders, the Elements Basal Ganglia Atlas autocontour for the VIM provides the optimal SRS target location that is 0.7–0.9 mm lateral to the VIM center.

ABBREVIATIONS

AC = anterior commissure; DBS = deep brain stimulation; DRTT = dentato-rubro-thalamic tract; DTI = diffusion tensor imaging; DVH = dose–volume histogram; ET = essential tremor; FA = fractional anisotropy; FTM = Fahn-Tolosa-Marin; GKS = Gamma Knife surgery; IQR = interquartile range; LINAC = linear accelerator; PC = posterior commissure; QUEST = Quality of Life in Essential Tremor Questionnaire; SRS = stereotactic radiosurgery; VIM = ventral intermediate nucleus of the thalamus.

Supplementary Materials

    • Supplementary Table 1 (PDF 410 KB)

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Mendonça MD, Meira B, Fernandes M, Barbosa R, Bugalho P. Deep brain stimulation for lesion-related tremors: a systematic review and meta-analysis. Parkinsonism Relat Disord. 2018;47:814.

    • Search Google Scholar
    • Export Citation
  • 2

    Chiken S, Nambu A. Disrupting neuronal transmission: mechanism of DBS? Front Syst Neurosci. 2014;8:33.

  • 3

    Barbe MT, Liebhart L, Runge M, Deyng J, Florin E, Wojtecki L, et al. Deep brain stimulation of the ventral intermediate nucleus in patients with essential tremor: stimulation below intercommissural line is more efficient but equally effective as stimulation above. Exp Neurol. 2011;230(1):131137.

    • Search Google Scholar
    • Export Citation
  • 4

    Kondziolka D, Ong JG, Lee JYK, Moore RY, Flickinger JC, Lunsford LD. Gamma Knife thalamotomy for essential tremor. J Neurosurg. 2008;108(1):111117.

    • Search Google Scholar
    • Export Citation
  • 5

    Young RF, Jacques S, Mark R, Kopyov O, Copcutt B, Posewitz A, Li F. Gamma knife thalamotomy for treatment of tremor: long-term results. J Neurosurg. 2000;93(suppl 3):128135.

    • Search Google Scholar
    • Export Citation
  • 6

    Campbell AM, Glover J, Chiang VLS, Gerrard J, Yu JB. Gamma knife stereotactic radiosurgical thalamotomy for intractable tremor: a systematic review of the literature. Radiother Oncol. 2015;114(3):296301.

    • Search Google Scholar
    • Export Citation
  • 7

    Luo G, Neimat JS, Cmelak A, Kirschner AN, Attia A, Morales-Paliza M, Ding GX. Margin of error for a frameless image guided radiosurgery system: direct confirmation based on posttreatment MRI scans. Pract Radiat Oncol. 2017;7(3):e223e231.

    • Search Google Scholar
    • Export Citation
  • 8

    Gevaert T, Verellen D, Tournel K, Linthout N, Bral S, Engels B, et al. Setup accuracy of the Novalis ExacTrac 6DOF system for frameless radiosurgery. Int J Radiat Oncol Biol Phys. 2012;82(5):16271635.

    • Search Google Scholar
    • Export Citation
  • 9

    Grimm J, Grimm SYL, Das IJ, Zhu Y, Yeo I, Xue J, et al. A quality assurance method with submillimeter accuracy for stereotactic linear accelerators. J Appl Clin Med Phys. 2010;12(1):3365.

    • Search Google Scholar
    • Export Citation
  • 10

    Jin JY, Ryu S, Faber K, Mikkelsen T, Chen Q, Li S, Movsas B. 2D/3D image fusion for accurate target localization and evaluation of a mask based stereotactic system in fractionated stereotactic radiotherapy of cranial lesions. Med Phys. 2006;33(12):45574566.

    • Search Google Scholar
    • Export Citation
  • 11

    Cameron B, Wang L, Cmelak AJ, et al. A Prospective, Observational trial of LINAC-based stereotactic radiosurgery for essential tremor and parkinsonian tremor. Int J Radiat Oncol Biol Phys. 2017;99(2):S102.

    • Search Google Scholar
    • Export Citation
  • 12

    Kooshkabadi A, Lunsford LD, Tonetti D, Flickinger JC, Kondziolka D. Gamma Knife thalamotomy for tremor in the magnetic resonance imaging era. J Neurosurg. 2013;118(4):713718.

    • Search Google Scholar
    • Export Citation
  • 13

    Niranjan A, Raju SS, Kooshkabadi A, Monaco E III, Flickinger JC, Lunsford LD. Stereotactic radiosurgery for essential tremor: retrospective analysis of a 19-year experience. Mov Disord. 2017;32(5):769777.

    • Search Google Scholar
    • Export Citation
  • 14

    Ohye C, Higuchi Y, Shibazaki T, Hashimoto T, Koyama T, Hirai T, et al. Gamma knife thalamotomy for Parkinson disease and essential tremor: a prospective multicenter study. Neurosurgery. 2012;70(3):526536.

    • Search Google Scholar
    • Export Citation
  • 15

    Witjas T, Carron R, Krack P, Eusebio A, Vaugoyeau M, Hariz M, et al. A prospective single-blind study of Gamma Knife thalamotomy for tremor. Neurology. 2015;85(18):15621568.

    • Search Google Scholar
    • Export Citation
  • 16

    Schaltenbrand G, Wahren W. Atlas for Stereotaxy of the Human Brain. 2nd ed. Thieme;1977.

  • 17

    Stacy MA, Elble RJ, Ondo WG, Wu SC, Hulihan J. Assessment of interrater and intrarater reliability of the Fahn-Tolosa-Marin Tremor Rating Scale in essential tremor. Mov Disord. 2007;22(6):833838.

    • Search Google Scholar
    • Export Citation
  • 18

    Hagell P, Nygren C. The 39 item Parkinson’s disease questionnaire (PDQ-39) revisited: implications for evidence based medicine. J Neurol Neurosurg Psychiatry. 2007;78(11):11911198.

    • Search Google Scholar
    • Export Citation
  • 19

    Tröster AI, Pahwa R, Fields JA, Tanner CM, Lyons KE. Quality of life in Essential Tremor Questionnaire (QUEST): development and initial validation. Parkinsonism Relat Disord. 2005;11(6):367373.

    • Search Google Scholar
    • Export Citation
  • 20

    Martínez-Martín P, Jiménez-Jiménez FJ, Carroza García E, Alonso-Navarro H, Rubio L, Calleja P, et al. Most of the Quality of Life in Essential Tremor Questionnaire (QUEST) psychometric properties resulted in satisfactory values. J Clin Epidemiol. 2010;63(7):767773.

    • Search Google Scholar
    • Export Citation
  • 21

    Coenen VA, Allert N, Paus S, Kronenbürger M, Urbach H, Mädler B. Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor: a diffusion tensor imaging study. Neurosurgery. 2014;75(6):657670.

    • Search Google Scholar
    • Export Citation
  • 22

    Calabrese E. Diffusion tractography in deep brain stimulation surgery: a review. Front Neuroanat. 2016;10:45.

  • 23

    Klein JC, Lorenz B, Kang JS, Baudrexel S, Seifried C, van de Loo S, et al. Diffusion tensor imaging of white matter involvement in essential tremor. Hum Brain Mapp. 2011;32(6):896904.

    • Search Google Scholar
    • Export Citation
  • 24

    Ewert S, Plettig P, Li N, Chakravarty MM, Collins DL, Herrington TM, et al. Toward defining deep brain stimulation targets in MNI space: A subcortical atlas based on multimodal MRI, histology and structural connectivity. Neuroimage. 2018;170:271282.

    • Search Google Scholar
    • Export Citation
  • 25

    Nowinski WL, Liu J, Thirunavuukarasuu A. Quantification and visualization of three-dimensional inconsistency of the ventrointermediate nucleus of the thalamus in the Schaltenbrand-Wahren brain atlas. Acta Neurochir (Wien). 2008;150(7):647653.

    • Search Google Scholar
    • Export Citation
  • 26

    Rasouli J, Ramdhani R, Panov FE, Dimov A, Zhang Y, Cho C, et al. Utilization of quantitative susceptibility mapping for direct targeting of the subthalamic nucleus during deep brain stimulation surgery. Oper Neurosurg (Hagerstown). 2018;14(4):412419.

    • Search Google Scholar
    • Export Citation
  • 27

    Deistung A, Schäfer A, Schweser F, Biedermann U, Güllmar D, Trampel R, et al. High-resolution MR imaging of the human brainstem in vivo at 7 Tesla. Front Hum Neurosci. 2013;7:710.

    • Search Google Scholar
    • Export Citation
  • 28

    Liu T, Eskreis-Winkler S, Schweitzer AD, Chen W, Kaplitt MG, Tsiouris AJ, Wang Y. Improved subthalamic nucleus depiction with quantitative susceptibility mapping. Radiology. 2013;269(1):216223.

    • Search Google Scholar
    • Export Citation
  • 29

    Najdenovska E, Tuleasca C, Jorge J, Maeder P, Marques JP, Roine T, et al. Comparison of MRI-based automated segmentation methods and functional neurosurgery targeting with direct visualization of the Ventro-intermediate thalamic nucleus at 7T. Sci Rep. 2019;9(1):1119.

    • Search Google Scholar
    • Export Citation
  • 30

    Sammartino F, Krishna V, King NKK, Lozano AM, Schwartz ML, Huang Y, Hodaie M. Tractography-based ventral intermediate nucleus targeting: novel methodology and intraoperative validation. Mov Disord. 2016;31(8):12171225.

    • Search Google Scholar
    • Export Citation
  • 31

    King NKK, Krishna V, Basha D, Elias G, Sammartino F, Hodaie M, et al. Microelectrode recording findings within the tractography-defined ventral intermediate nucleus. J Neurosurg. 2017;126(5):16691675.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 326 326 181
Full Text Views 12858 12858 2095
PDF Downloads 57 57 34
EPUB Downloads 0 0 0