Connectivity-based thalamus parcellation and surgical targeting of somatosensory subnuclei

View More View Less
  • 1 Oxford Functional Neurosurgery, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom; and
  • | 2 Department of Neurosurgery, John Radcliffe Hospital, Oxford University NHS Foundation Trust, Oxford, United Kingdom
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

OBJECTIVE

The anatomy of the posterolateral thalamus varies substantially between individuals, presenting a challenge for surgical targeting. Patient-specific, connectivity-based parcellation of the thalamus may effectively approximate the ventrocaudal nucleus (Vc). This remains to be robustly validated or assessed as a method to guide surgical targeting. The authors assessed the validity of connectivity-based parcellation for targeting the Vc and its potential for improving clinical outcomes of pain surgery.

METHODS

A cohort of 19 patients with regional, chronic neuropathic pain underwent preoperative structural and diffusion MRI, then progressed to deep brain stimulation targeting the Vc based on traditional atlas coordinates. Surgical thalami were retrospectively segmented and then parcellated based on tractography estimates of thalamocortical connectivity. The location of each patient’s electrode array was analyzed with respect to their primary somatosensory cortex (S1) parcel and compared across patients with reference to the thalamic homunculus.

RESULTS

Ten patients achieved long-term pain relief. Sixty-one percent of an average array (interquartile range 42%–74%) was located in the S1 parcel. In patients who achieved long-term benefit from surgery, array location in the individually generated S1 parcels was medial for face pain, centromedial for arm pain, and centrolateral for leg pain. Patients who did not benefit from surgery did not follow this pattern. Standard stereotactic coordinates of electrode locations diverged from this pattern.

CONCLUSIONS

Connectivity-based parcellation of the thalamus appears to be a reliable method for segmenting the Vc. Identifying the Vc in this way, and targeting mediolaterally as appropriate for the region of pain, merits exploration in an effort to increase the yield of successful surgical procedures.

ABBREVIATIONS

AC-PC = anterior commissure–posterior commissure; DBS = deep brain stimulation; FSL = FMRIB Software Library; MER = microelectrode recording; S1 = primary somatosensory cortex; Vc = ventrocaudal nucleus.

Supplementary Materials

    • Supplemental Figure and Table (PDF 1,035 KB)

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Hécaen H, Talairach J, David M, Dell M. Coagulations limitees du thalamus dans les algies du syndrome thalamique. Resultats therapeutiques et physiologiques. Rev Neurol (Paris). 1949;81(11):917931.

    • Search Google Scholar
    • Export Citation
  • 2

    Jeanmonod D, Magnin M, Morel A, Siegemund M. Surgical control of the human thalamocortical dysrhythmia: I. Central lateral thalamotomy in neurogenic pain. Thalamus Relat Syst. 2001;1(1):7179.

    • Search Google Scholar
    • Export Citation
  • 3

    Hosobuchi Y, Adams JE, Rutkin B. Chronic thalamic stimulation for the control of facial anesthesia dolorosa. Arch Neurol. 1973;29(3):158161.

    • Search Google Scholar
    • Export Citation
  • 4

    Yoshii N, Mizokami T, Ushikubo T, Kuramitsu T, Fukuda S. Long-term follow-up study after pulvinotomy for intractable pain. Appl Neurophysiol. 1980;43(3-5):128132.

    • Search Google Scholar
    • Export Citation
  • 5

    Levy RM, Lamb S, Adams JE. Treatment of chronic pain by deep brain stimulation: long term follow-up and review of the literature. Neurosurgery. 1987;21(6):885893.

    • Search Google Scholar
    • Export Citation
  • 6

    Pereira EAC, Boccard SG, Linhares P, Chamadoira C, Rosas MJ, Abreu P, et al. Thalamic deep brain stimulation for neuropathic pain after amputation or brachial plexus avulsion. Neurosurg Focus. 2013;35(3):E7.

    • Search Google Scholar
    • Export Citation
  • 7

    Yamamoto T, Katayama Y, Obuchi T, Kano T, Kobayashi K, Oshima H, Fukaya C. Thalamic sensory relay nucleus stimulation for the treatment of peripheral deafferentation pain. Stereotact Funct Neurosurg. 2006;84(4):180183.

    • Search Google Scholar
    • Export Citation
  • 8

    Hirato M, Miyagishima T, Gouda T, Takahashi A, Yoshimoto Y. Electrical thalamic stimulation in the anterior part of the ventral posterolateral nucleus for the treatment of patients with central poststroke pain. Neuromodulation. 2021;24(2):36137.

    • Search Google Scholar
    • Export Citation
  • 9

    Akram H, Dayal V, Mahlknecht P, Georgiev D, Hyam J, Foltynie T, et al. Connectivity derived thalamic segmentation in deep brain stimulation for tremor. Neuroimage Clin. 2018;18:130142.

    • Search Google Scholar
    • Export Citation
  • 10

    Middlebrooks EH, Tuna IS, Almeida L, Grewal SS, Wong J, Heckman MG, et al. Structural connectivity-based segmentation of the thalamus and prediction of tremor improvement following thalamic deep brain stimulation of the ventral intermediate nucleus. Neuroimage Clin. 2018;20:12661273.

    • Search Google Scholar
    • Export Citation
  • 11

    Su JH, Thomas FT, Kasoff WS, Tourdias T, Choi EY, Rutt BK, Saranathan M. Thalamus Optimized Multi Atlas Segmentation (THOMAS): fast, fully automated segmentation of thalamic nuclei from structural MRI. Neuroimage.2019;194:272282.

    • Search Google Scholar
    • Export Citation
  • 12

    Morel A, Magnin M, Jeanmonod D. Multiarchitectonic and stereotactic atlas of the human thalamus. J Comp Neurol. 1997;387(4):588630.

  • 13

    Behrens TEJ, Johansen-Berg H, Woolrich MW, Smith SM, Wheeler-Kingshott CA, Boulby PA, et al. Non-invasive mapping of connections between human thalamus and cortex using diffusion imaging. Nat Neurosci. 2003;6(7):750757.

    • Search Google Scholar
    • Export Citation
  • 14

    Elias WJ, Zheng ZA, Domer P, Quigg M, Pouratian N. Validation of connectivity-based thalamic segmentation with direct electrophysiologic recordings from human sensory thalamus. Neuroimage. 2012;59(3):20252034.

    • Search Google Scholar
    • Export Citation
  • 15

    Lenz FA, Dostrovsky JO, Tasker RR, Yamashiro K, Kwan HC, Murphy JT. Single-unit analysis of the human ventral thalamic nuclear group: somatosensory responses. J Neurophysiol. 1988;59(2):299316.

    • Search Google Scholar
    • Export Citation
  • 16

    Boccard SGJ, Pereira EAC, Moir L, Aziz TZ, Green AL. Long-term outcomes of deep brain stimulation for neuropathic pain. Neurosurgery. 2013;72(2):221231.

    • Search Google Scholar
    • Export Citation
  • 17

    Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, et al. Advances in functional and structural MR image analysis and implementation as FSL. Neuroimage.2004;23(suppl 1):S208S219.

    • Search Google Scholar
    • Export Citation
  • 18

    Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage. 2003;20(2):870888.

    • Search Google Scholar
    • Export Citation
  • 19

    Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:10631078.

    • Search Google Scholar
    • Export Citation
  • 20

    Andersson JLR, Sotiropoulos SN. Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes. Neuroimage. 2015;122:166176.

    • Search Google Scholar
    • Export Citation
  • 21

    Andersson JLR, Graham MS, Zsoldos E, Sotiropoulos SN. Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images. Neuroimage. 2016;141:556572.

    • Search Google Scholar
    • Export Citation
  • 22

    Behrens TEJ, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med. 2003;50(5):10771088.

    • Search Google Scholar
    • Export Citation
  • 23

    Behrens TEJ, Berg HJ, Jbabdi S, Rushworth MFS, Woolrich MW. Probabilistic diffusion tractography with multiple fibre orientations: What can we gain?. Neuroimage. 2007;34(1):144155.

    • Search Google Scholar
    • Export Citation
  • 24

    Patenaude B, Smith SM, Kennedy DN, Jenkinson M. A Bayesian model of shape and appearance for subcortical brain segmentation. Neuroimage. 2011;56(3):907922.

    • Search Google Scholar
    • Export Citation
  • 25

    Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143156.

  • 26

    Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17(2):825841.

    • Search Google Scholar
    • Export Citation
  • 27

    Greve DN, Fischl B. Accurate and robust brain image alignment using boundary-based registration. Neuroimage. 2009;48(1):6372.

  • 28

    Andersson JL, Jenkinson M, Smith S. Non-linear registration aka Spatial normalization: FMRIB. Technical Report TR07JA2.FMRIB Anal Group Univ Oxf. Published online on June 27, 2007. Accessed August 30, 2021. https://www.fmrib.ox.ac.uk/datasets/techrep/tr07ja2/tr07ja2.pdf

    • Search Google Scholar
    • Export Citation
  • 29

    Conturo TE, Lori NF, Cull TS, Akbudak E, Snyder AZ, Shimony JS, et al. Tracking neuronal fiber pathways in the living human brain. Proc Natl Acad Sci U S A. 1999;96(18):1042210427.

    • Search Google Scholar
    • Export Citation
  • 30

    Lawes INC, Barrick TR, Murugam V, Spierings N, Evans DR, Song M, Clark CA. Atlas-based segmentation of white matter tracts of the human brain using diffusion tensor tractography and comparison with classical dissection. Neuroimage. 2008;39(1):6279.

    • Search Google Scholar
    • Export Citation
  • 31

    Schilling KG, Petit L, Rheault F, Remedios S, Pierpaoli C, Anderson AW, et al. Brain connections derived from diffusion MRI tractography can be highly anatomically accurate-if we know where white matter pathways start, where they end, and where they do not go. Brain Struct Funct. 2020;225(8):23872402.

    • Search Google Scholar
    • Export Citation
  • 32

    Lambert C, Simon H, Colman J, Barrick TR. Defining thalamic nuclei and topographic connectivity gradients in vivo. Neuroimage. 2017;158:466479.

    • Search Google Scholar
    • Export Citation
  • 33

    Traynor C, Heckemann RA, Hammers A, O’Muircheartaigh J, Crum WR, Barker GJ, Richardson MP. Reproducibility of thalamic segmentation based on probabilistic tractography. Neuroimage. 2010;52(1):6985.

    • Search Google Scholar
    • Export Citation
  • 34

    Clayden JD, Thomas DL, Kraskov A. Tractography-based parcellation does not provide strong evidence of anatomical organisation within the thalamus. Neuroimage. 2019;199:418426.

    • Search Google Scholar
    • Export Citation
  • 35

    Eickhoff SB, Thirion B, Varoquaux G, Bzdok D. Connectivity-based parcellation: critique and implications. Hum Brain Mapp. 2015;36(12):47714792.

    • Search Google Scholar
    • Export Citation
  • 36

    Sammartino F, Krishna V, King NKK, Lozano AM, Schwartz ML, Huang Y, Hodaie M. Tractography-based ventral intermediate nucleus targeting: novel methodology and intraoperative validation. Mov Disord. 2016;31(8):12171225.

    • Search Google Scholar
    • Export Citation
  • 37

    King NKK, Krishna V, Basha D, Elias G, Sammartino F, Hodaie M, et al. Microelectrode recording findings within the tractography-defined ventral intermediate nucleus. J Neurosurg. 2017;126(5):16691675.

    • Search Google Scholar
    • Export Citation
  • 38

    Davis KD, Kiss ZHT, Luo L, Tasker RR, Lozano AM, Dostrovsky JO. Phantom sensations generated by thalamic microstimulation. Nature. 1998;391(6665):385387.

    • Search Google Scholar
    • Export Citation
  • 39

    Lenz FA. The ventral posterior nucleus of thalamus is involved in the generation of central pain syndromes. APS J. 1992;1(1):4251.

  • 40

    Mazars GJ. Intermittent stimulation of nucleus ventralis posterolateralis for intractable pain. Pain. 1976;2(1):9091.

  • 41

    Bekar L, Libionka W, Tian GF, Xu Q, Torres A, Wang X, et al. Adenosine is crucial for deep brain stimulation-mediated attenuation of tremor. Nat Med. 2008;14(1):7580.

    • Search Google Scholar
    • Export Citation
  • 42

    Vedam-Mai V, van Battum EY, Kamphuis W, Feenstra MG, Denys D, Reynolds BA, et al. Deep brain stimulation and the role of astrocytes. Mol Psychiatry. 2012;17(2):124131.115.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 92 92 92
Full Text Views 16 16 16
PDF Downloads 26 26 26
EPUB Downloads 0 0 0