Novel experimental model of brain arteriovenous malformations using conditional Alk1 gene deletion in transgenic mice

View More View Less
  • 1 Barrow Aneurysm and AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix;
  • | 2 Departments of Neurosurgery and
  • | 3 Neuroimaging, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix; and
  • | 4 Ivy Brain Tumor Center, Department of Translational Neuroscience, Barrow Neurological Institute, St. Joseph’s Hospital and Medical Center, Phoenix, Arizona
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

OBJECTIVE

Hereditary hemorrhagic telangiectasia is the only condition associated with multiple inherited brain arteriovenous malformations (AVMs). Therefore, a mouse model was developed with a genetics-based approach that conditionally deleted the causative activin receptor-like kinase 1 (Acvrl1 or Alk1) gene. Radiographic and histopathological findings were correlated, and AVM stability and hemorrhagic behavior over time were examined.

METHODS

Alk1-floxed mice were crossed with deleter mice to generate offspring in which both copies of the Alk1 gene were deleted by Tagln-Cre to form brain AVMs in the mice. AVMs were characterized using MRI, MRA, and DSA. Brain AVMs were characterized histopathologically with latex dye perfusion, immunofluorescence, and Prussian blue staining.

RESULTS

Brains of 55 Tagln-Cre+;Alk1f/f mutant mice were categorized into three groups: no detectable vascular lesions (group 1; 23 of 55, 42%), arteriovenous fistulas (AVFs) with no nidus (group 2; 10 of 55, 18%), and nidal AVMs (group 3; 22 of 55, 40%). Microhemorrhage was observed on MRI or MRA in 11 AVMs (50%). AVMs had the angiographic hallmarks of early nidus opacification, a tangle of arteries and dilated draining veins, and rapid shunting of blood flow. Latex dye perfusion confirmed arteriovenous shunting in all AVMs and AVFs. Microhemorrhages were detected adjacent to AVFs and AVMs, visualized by iron deposition, Prussian blue staining, and macrophage infiltration using CD68 immunostaining. Brain AVMs were stable on serial MRI and MRA in group 3 mice (mean age at initial imaging 2.9 months; mean age at last imaging 9.5 months).

CONCLUSIONS

Approximately 40% of transgenic mice satisfied the requirements of a stable experimental AVM model by replicating nidal anatomy, arteriovenous hemodynamics, and microhemorrhagic behavior. Transgenic mice with AVFs had a recognizable phenotype of hereditary hemorrhagic telangiectasia but were less suitable for experimental modeling. AVM pathogenesis can be understood as the combination of conditional Alk1 gene deletion during embryogenesis and angiogenesis that is hyperactive in developing and newborn mice, which translates to a congenital origin in most patients but an acquired condition in patients with a confluence of genetic and angiogenic events later in life. This study offers a novel experimental brain AVM model for future studies of AVM pathophysiology, growth, rupture, and therapeutic regression.

ABBREVIATIONS

AVF = arteriovenous fistula; AVM = arteriovenous malformation; CCA = common carotid artery; DAVF = dural AVF; HHT = hereditary hemorrhagic telangiectasia; NEX = number of acquisitions; TEeff = effective echo time; VEGF = vascular endothelial growth factor.

Supplementary Materials

    • Supplementary Methods (PDF 513 KB)

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Tu J, Karunanayaka A, Windsor A, Stoodley MA. Comparison of an animal model of arteriovenous malformation with human arteriovenous malformation. J Clin Neurosci. 2010;17(1):96102.

    • Search Google Scholar
    • Export Citation
  • 2

    Lawton MT, Jacobowitz R, Spetzler RF. Redefined role of angiogenesis in the pathogenesis of dural arteriovenous malformations. J Neurosurg. 1997;87(2):267274.

    • Search Google Scholar
    • Export Citation
  • 3

    Vates GE, Hashimoto T, Young WL, Lawton MT. Angiogenesis in the brain during development: the effects of vascular endothelial growth factor and angiopoietin-2 in an animal model. J Neurosurg. 2005;103(1):136145.

    • Search Google Scholar
    • Export Citation
  • 4

    McAllister KA, Grogg KM, Johnson DW, Gallione CJ, Baldwin MA, Jackson CE, et al. Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat Genet. 1994;8(4):345351.

    • Search Google Scholar
    • Export Citation
  • 5

    Johnson DW, Berg JN, Baldwin MA, Gallione CJ, Marondel I, Yoon SJ, et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat Genet. 1996;13(2):189195.

    • Search Google Scholar
    • Export Citation
  • 6

    Goumans MJ, Liu Z, ten Dijke P. TGF-beta signaling in vascular biology and dysfunction. Cell Res. 2009;19(1):116127.

  • 7

    Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, et al. Activin receptor-like kinase 1 modulates transforming growth factor-β1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci U S A. 2000;97(6):26262631.

    • Search Google Scholar
    • Export Citation
  • 8

    Bourdeau A, Dumont DJ, Letarte M. A murine model of hereditary hemorrhagic telangiectasia. J Clin Invest. 1999;104(10):13431351.

  • 9

    Li DY, Sorensen LK, Brooke BS, Urness LD, Davis EC, Taylor DG, et al. Defective angiogenesis in mice lacking endoglin. Science. 1999;284(5419):15341537.

    • Search Google Scholar
    • Export Citation
  • 10

    Arthur HM, Ure J, Smith AJ, Renforth G, Wilson DI, Torsney E, et al. Endoglin, an ancillary TGFβ receptor, is required for extraembryonic angiogenesis and plays a key role in heart development. Dev Biol. 2000;217(1):4253.

    • Search Google Scholar
    • Export Citation
  • 11

    Hao Q, Zhu Y, Su H, Shen F, Yang GY, Kim H, Young WL. VEGF induces more severe cerebrovascular dysplasia in endoglin than in Alk1 mice. Transl Stroke Res. 2010;1(3):197201.

    • Search Google Scholar
    • Export Citation
  • 12

    Milton I, Ouyang D, Allen CJ, Yanasak NE, Gossage JR, Alleyne CH Jr, Seki T. Age-dependent lethality in novel transgenic mouse models of central nervous system arteriovenous malformations. Stroke. 2012;43(5):14321435.

    • Search Google Scholar
    • Export Citation
  • 13

    Park SO, Lee YJ, Seki T, Hong KH, Fliess N, Jiang Z, et al. ALK5- and TGFBR2-independent role of ALK1 in the pathogenesis of hereditary hemorrhagic telangiectasia type 2. Blood. 2008;111(2):633642.

    • Search Google Scholar
    • Export Citation
  • 14

    Han C, Choe SW, Kim YH, Acharya AP, Keselowsky BG, Sorg BS, et al. VEGF neutralization can prevent and normalize arteriovenous malformations in an animal model for hereditary hemorrhagic telangiectasia 2. Angiogenesis. 2014;17(4):823830.

    • Search Google Scholar
    • Export Citation
  • 15

    Park SO, Wankhede M, Lee YJ, Choi EJ, Fliess N, Choe SW, et al. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J Clin Invest. 2009;119(11):34873496.

    • Search Google Scholar
    • Export Citation
  • 16

    Holtwick R, Gotthardt M, Skryabin B, Steinmetz M, Potthast R, Zetsche B, et al. Smooth muscle-selective deletion of guanylyl cyclase-A prevents the acute but not chronic effects of ANP on blood pressure. Proc Natl Acad Sci U S A. 2002;99(10):71427147.

    • Search Google Scholar
    • Export Citation
  • 17

    Garrido-Martin EM, Nguyen HL, Cunningham TA, Choe SW, Jiang Z, Arthur HM, et al. Common and distinctive pathogenetic features of arteriovenous malformations in hereditary hemorrhagic telangiectasia 1 and hereditary hemorrhagic telangiectasia 2 animal models—brief report. Arterioscler Thromb Vasc Biol. 2014;34(10):22322236.

    • Search Google Scholar
    • Export Citation
  • 18

    Gallione CJ, Repetto GM, Legius E, Rustgi AK, Schelley SL, Tejpar S, et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet. 2004;363(9412):852859.

    • Search Google Scholar
    • Export Citation
  • 19

    Guttmacher AE, Marchuk DA, White RI Jr. Hereditary hemorrhagic telangiectasia. N Engl J Med. 1995;333(14):918924.

  • 20

    Govani FS, Shovlin CL. Hereditary haemorrhagic telangiectasia: a clinical and scientific review. Eur J Hum Genet. 2009;17(7):860871.

  • 21

    Krings T, Kim H, Power S, Nelson J, Faughnan ME, Young WL, terBrugge KG. Neurovascular manifestations in hereditary hemorrhagic telangiectasia: imaging features and genotype-phenotype correlations. AJNR Am J Neuroradiol. 2015;36(5):863870.

    • Search Google Scholar
    • Export Citation
  • 22

    Spetzler RF, Martin NA. A proposed grading system for arteriovenous malformations. J Neurosurg. 1986;65(4):476483.

  • 23

    Lawton MT, Kim H, McCulloch CE, Mikhak B, Young WL. A supplementary grading scale for selecting patients with brain arteriovenous malformations for surgery. Neurosurgery. 2010;66(4):702713.

    • Search Google Scholar
    • Export Citation
  • 24

    Gupta A, Periakaruppan A. Intracranial dural arteriovenous fistulas: a review. Indian J Radiol Imaging. 2009;19(1):4348.

  • 25

    Terada T, Higashida RT, Halbach VV, Dowd CF, Tsuura M, Komai N, et al. Development of acquired arteriovenous fistulas in rats due to venous hypertension. J Neurosurg. 1994;80(5):884889.

    • Search Google Scholar
    • Export Citation
  • 26

    Herman JM, Spetzler RF, Bederson JB, Kurbat JM, Zabramski JM. Genesis of a dural arteriovenous malformation in a rat model. J Neurosurg. 1995;83(3):539545.

    • Search Google Scholar
    • Export Citation
  • 27

    Zhu Y, Lawton MT, Du R, Shwe Y, Chen Y, Shen F, et al. Expression of hypoxia-inducible factor-1 and vascular endothelial growth factor in response to venous hypertension. Neurosurgery. 2006;59(3):687696.

    • Search Google Scholar
    • Export Citation
  • 28

    Walker EJ, Su H, Shen F, Choi EJ, Oh SP, Chen G, et al. Arteriovenous malformation in the adult mouse brain resembling the human disease. Ann Neurol. 2011;69(6):954962.

    • Search Google Scholar
    • Export Citation
  • 29

    Kim H, Su H, Weinsheimer S, Pawlikowska L, Young WL. Brain arteriovenous malformation pathogenesis: a response-to-injury paradigm. Acta Neurochir Suppl (Wien).2011;111:8392.

    • Search Google Scholar
    • Export Citation
  • 30

    Kim H, Nelson J, Krings T, terBrugge KG, McCulloch CE, Lawton MT, et al. Hemorrhage rates from brain arteriovenous malformation in patients with hereditary hemorrhagic telangiectasia. Stroke. 2015;46(5):13621364.

    • Search Google Scholar
    • Export Citation
  • 31

    Mohr JP, Parides MK, Stapf C, Moquete E, Moy CS, Overbey JR, et al. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet. 2014;383(9917):614621.

    • Search Google Scholar
    • Export Citation
  • 32

    Guo Y, Saunders T, Su H, Kim H, Akkoc D, Saloner DA, et al. Silent intralesional microhemorrhage as a risk factor for brain arteriovenous malformation rupture. Stroke. 2012;43(5):12401246.

    • Search Google Scholar
    • Export Citation
  • 33

    Abla AA, Nelson J, Kim H, Hess CP, Tihan T, Lawton MT. Silent arteriovenous malformation hemorrhage and the recognition of "unruptured" arteriovenous malformation patients who benefit from surgical intervention. Neurosurgery. 2015;76(5):592600.

    • Search Google Scholar
    • Export Citation
  • 34

    Du R, Hashimoto T, Tihan T, Young WL, Perry V, Lawton MT. Growth and regression of arteriovenous malformations in a patient with hereditary hemorrhagic telangiectasia. Case report. J Neurosurg. 2007;106(3):470477.

    • Search Google Scholar
    • Export Citation
  • 35

    Lawton MT, Stewart CL, Wulfstat AA, Derugin N, Hashimoto T, Young WL. The transgenic arteriovenous fistula in the rat: an experimental model of gene therapy for brain arteriovenous malformations. Neurosurgery. 2004;54(6):14631471.

    • Search Google Scholar
    • Export Citation
  • 36

    Murphy PA, Kim TN, Lu G, Bollen AW, Schaffer CB, Wang RA. Notch4 normalization reduces blood vessel size in arteriovenous malformations. Sci Transl Med. 2012;4(117):117ra8.

    • Search Google Scholar
    • Export Citation
  • 37

    Brinjikji W, Iyer VN, Wood CP, Lanzino G. Prevalence and characteristics of brain arteriovenous malformations in hereditary hemorrhagic telangiectasia: a systematic review and meta-analysis. J Neurosurg. 2017;127(2):302310.

    • Search Google Scholar
    • Export Citation
  • 38

    Nikolaev SI, Vetiska S, Bonilla X, Boudreau E, Jauhiainen S, Rezai Jahromi B, et al. Somatic activating KRAS mutations in arteriovenous malformations of the brain. N Engl J Med. 2018;378(3):250261.

    • Search Google Scholar
    • Export Citation
  • 39

    Hong T, Yan Y, Li J, Radovanovic I, Ma X, Shao YW, et al. High prevalence of KRAS/BRAF somatic mutations in brain and spinal cord arteriovenous malformations. Brain. 2019;142(1):2334.

    • Search Google Scholar
    • Export Citation
  • 40

    Oka M, Kushamae M, Aoki T, Yamaguchi T, Kitazato K, Abekura Y, et al. KRAS G12D or G12V mutation in human brain arteriovenous malformations. World Neurosurg. 2019;126:e1365e1373.

    • Search Google Scholar
    • Export Citation
  • 41

    Goss JA, Huang AY, Smith E, Konczyk DJ, Smits PJ, Sudduth CL, et al. Somatic mutations in intracranial arteriovenous malformations. PLoS One. 2019;14(12):e0226852.

    • Search Google Scholar
    • Export Citation
  • 42

    Priemer DS, Vortmeyer AO, Zhang S, Chang HY, Curless KL, Cheng L. Activating KRAS mutations in arteriovenous malformations of the brain: frequency and clinicopathologic correlation. Hum Pathol. 2019;89:3339.

    • Search Google Scholar
    • Export Citation
  • 43

    Fish JE, Flores Suarez CP, Boudreau E, Herman AM, Gutierrez MC, Gustafson D, et al. Somatic gain of KRAS function in the endothelium is sufficient to cause vascular malformations that require MEK but not PI3K signaling. Circ Res. 2020;127(6):727743.

    • Search Google Scholar
    • Export Citation
  • 44

    Choi EJ, Chen W, Jun K, Arthur HM, Young WL, Su H. Novel brain arteriovenous malformation mouse models for type 1 hereditary hemorrhagic telangiectasia. PLoS One. 2014;9(2):e88511.

    • Search Google Scholar
    • Export Citation
  • 45

    Chen W, Guo Y, Walker EJ, Shen F, Jun K, Oh SP, et al. Reduced mural cell coverage and impaired vessel integrity after angiogenic stimulation in the Alk1-deficient brain. Arterioscler Thromb Vasc Biol. 2013;33(2):305310.

    • Search Google Scholar
    • Export Citation
  • 46

    Chen W, Sun Z, Han Z, Jun K, Camus M, Wankhede M, et al. De novo cerebrovascular malformation in the adult mouse after endothelial Alk1 deletion and angiogenic stimulation. Stroke. 2014;45(3):900902.

    • Search Google Scholar
    • Export Citation
  • 47

    Choi EJ, Walker EJ, Shen F, Oh SP, Arthur HM, Young WL, Su H. Minimal homozygous endothelial deletion of Eng with VEGF stimulation is sufficient to cause cerebrovascular dysplasia in the adult mouse. Cerebrovasc Dis. 2012;33(6):540547.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 493 493 493
Full Text Views 63 63 63
PDF Downloads 76 76 76
EPUB Downloads 0 0 0