Determinants of seizure outcome after resective surgery following stereoelectroencephalography

View More View Less
  • 1 Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland; and
  • | 2 Quantitative Health Sciences, Cleveland Clinic, Cleveland, Ohio
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

OBJECTIVE

The aim of this study was to investigate seizure outcomes after resective epilepsy surgery following stereoelectroencephalography (SEEG), including group characteristics, comparing surgical and nonsurgical groups and assess predictors of time to seizure recurrence.

METHODS

Clinical and EEG data of 536 consecutive patients who underwent SEEG at Cleveland Clinic Epilepsy Center between 2009 and 2017 were reviewed. The primary outcome was defined as complete seizure freedom since the resective surgery, discounting any auras or seizures that occurred within the 1st postoperative week. In addition, the rate of seizure freedom based on Engel classification was determined in patients with follow-up of ≥ 1 year. Presumably significant outcome variables were first identified using univariate analysis, and Cox proportional hazards modeling was used to identify outcome predictors.

RESULTS

Of 527 patients satisfying study criteria, 341 underwent resective surgery. Complete and continuous seizure freedom after surgery was achieved in 55.5% of patients at 1 year postoperatively, 44% of patients at 3 years, and 39% of patients at 5 years. As a secondary outcome point, 58% of patients achieved Engel class I seizure outcome for at least 1 year at last follow-up. Among surgical outcome predictors, in multivariate model analysis, the seizure recurrence rate by type of resection (p = 0.039) remained statistically significant, with the lowest risk of recurrence occurring after frontal and temporal lobe resections compared with multilobar and posterior quadrant surgeries. Patients with a history of previous resection (p = 0.006) and bilateral implantations (p = 0.023) were more likely to have seizure recurrence. The absence of an MRI abnormality prior to resective surgery did not significantly affect seizure outcome in this cohort.

CONCLUSIONS

This large, single-center series shows that resective surgery leads to continuous seizure freedom in a group of patients with complex and severe pharmacoresistant epilepsy after SEEG evaluation. In addition, up to 58% of patients achieved seizure freedom at last follow-up. The authors’ results suggest that SEEG is equally effective in patients with frontal and temporal lobe epilepsy with or without MRI identified lesions.

ABBREVIATIONS

ILAE = International League Against Epilepsy; MEG = magnetoencephalography; SEEG = stereoelectroencephalography.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Talairach J, Bancaud J, Bonis A, Szikla G, Tournoux P. Functional stereotaxic exploration of epilepsy. Confin Neurol. 1962;22(3-5):328331.

    • Search Google Scholar
    • Export Citation
  • 2

    Bancaud J, Talairach J, Bonis A, Szikla G, Morel P, Bordas-Ferrer M. La stéréoélectroencéphalographie dans l’épilepsie. Masson; 1965.

    • Search Google Scholar
    • Export Citation
  • 3

    Chauvel P, Buser P, Badier JM, Liegeois-Chauvel C, Marquis P, Bancaud J. The “epileptogenic zone” in humans: representation of intercritical events by spatio-temporal maps. Article in French. Rev Neurol (Paris). 1987;143(5):443450.

    • Search Google Scholar
    • Export Citation
  • 4

    Wendling F, Bartolomei F, Bellanger JJ, Bourien J, Chauvel P. Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset. Brain. 2003;126(Pt 6):1449-1459.

    • Search Google Scholar
    • Export Citation
  • 5

    Cardinale F, Cossu M, Castana L, Casaceli G, Schiariti MP, Miserocchi A, et al. Stereoelectroencephalography: surgical methodology, safety, and stereotactic application accuracy in 500 procedures. Neurosurgery. 2013;72(3):353366.

    • Search Google Scholar
    • Export Citation
  • 6

    Cossu M, Cardinale F, Castana L, Citterio A, Francione S, Tassi L, et al. Stereoelectroencephalography in the presurgical evaluation of focal epilepsy: a retrospective analysis of 215 procedures. Neurosurgery. 2005;57(4):706718.

    • Search Google Scholar
    • Export Citation
  • 7

    Guenot M, Isnard J, Ryvlin P, Fischer C, Ostrowsky K, Mauguiere F, Sindou M. Neurophysiological monitoring for epilepsy surgery: the Talairach SEEG method. StereoElectroEncephaloGraphy. Indications, results, complications and therapeutic applications in a series of 100 consecutive cases. Stereotact Funct Neurosurg. 2001;77(1-4):2932.

    • Search Google Scholar
    • Export Citation
  • 8

    Wieser HG, Blume WT, Fish D, Goldensohn E, Hufnagel A, King D, et al. ILAE Commission Report. Proposal for a new classification of outcome with respect to epileptic seizures following epilepsy surgery. Epilepsia. 2001;42(2):282286.

    • Search Google Scholar
    • Export Citation
  • 9

    McGonigal A, Bartolomei F, Régis J, Guye M, Gavaret M, Trébuchon-Da Fonseca A, et al. Stereoelectroencephalography in presurgical assessment of MRI-negative epilepsy. Brain. 2007;130(Pt 12):31693183.

    • Search Google Scholar
    • Export Citation
  • 10

    Wiebe S, Jette N. Pharmacoresistance and the role of surgery in difficult to treat epilepsy. Nat Rev Neurol. 2012;8(12):669677.

  • 11

    Gonzalez-Martinez J, Mullin J, Vadera S, Bulacio J, Hughes G, Jones S, et al. Stereotactic placement of depth electrodes in medically intractable epilepsy. J Neurosurg. 2014;120(3):639644.

    • Search Google Scholar
    • Export Citation
  • 12

    Bulacio JC, Jehi L, Wong C, Gonzalez-Martinez J, Kotagal P, Nair D, et al. Long-term seizure outcome after resective surgery in patients evaluated with intracranial electrodes. Epilepsia. 2012;53(10):17221730.

    • Search Google Scholar
    • Export Citation
  • 13

    Bonini F, McGonigal A, Scavarda D, Carron R, Régis J, Dufour H, et al. Predictive factors of surgical outcome in frontal lobe epilepsy explored with stereoelectroencephalography. Neurosurgery. 2018;83(2):217225.

    • Search Google Scholar
    • Export Citation
  • 14

    Cardinale F, Rizzi M, Vignati E, Cossu M, Castana L, d’Orio P, et al. Stereoelectroencephalography: retrospective analysis of 742 procedures in a single centre. Brain. 2019;142(9):26882704.

    • Search Google Scholar
    • Export Citation
  • 15

    Hennessy MJ, Elwes RDC, Binnie CD, Polkey CE. Failed surgery for epilepsy a study of persistence and recurrence of seizures following temporal resection. Brain. 2000;123(Pt 12):24452466.

    • Search Google Scholar
    • Export Citation
  • 16

    Van Gompel JJ, Worrell GA, Bell ML, Patrick TA, Cascino GD, Raffel C, et al. Intracranial electroencephalography with subdural grid electrodes: techniques, complications, and outcomes. Neurosurgery. 2008;63(3):498506.

    • Search Google Scholar
    • Export Citation
  • 17

    Yardi R, Morita-Sherman ME, Fitzgerald Z, Punia V, Bena J, Morrison S, et al. Long-term outcomes of reoperations in epilepsy surgery. Epilepsia. 2020;61(3):465478.

    • Search Google Scholar
    • Export Citation
  • 18

    Thom M, Martinian L, Catarino C, Yogarajah M, Koepp MJ, Caboclo L, Sisodiya SM. Bilateral reorganization of the dentate gyrus in hippocampal sclerosis: a postmortem study. Neurology. 2009;73(13):10331040.

    • Search Google Scholar
    • Export Citation
  • 19

    Busch RM, Floden D, Lineweaver TT, Chapin JS, Unnwongse K, Wehner T, et al. Effect of apolipoprotein ε4 allele on hippocampal and brain volume in intractable temporal lobe epilepsy. Epilepsy Behav. 2011;21(1):8890.

    • Search Google Scholar
    • Export Citation
  • 20

    Ristić AJ, Alexopoulos AV, So N, Wong C, Najm IM. Parietal lobe epilepsy: the great imitator among focal epilepsies. Epileptic Disord. 2012;14(1):2231.

    • Search Google Scholar
    • Export Citation
  • 21

    Stevelink R, Sanders MW, Tuinman MP, Brilstra EH, Koeleman BP, Jansen FE, Braun KP. Epilepsy surgery for patients with genetic refractory epilepsy: a systematic review. Epileptic Disord. 2018;20(2):99115.

    • Search Google Scholar
    • Export Citation
  • 22

    Munyon C, Sweet J, Luders H, Lhatoo S, Miller J. The 3-dimensional grid: a novel approach to stereoelectroencephalography. Neurosurgery. 2015;11(suppl 2):127134.

    • Search Google Scholar
    • Export Citation
  • 23

    Nowell M, Rodionov R, Diehl B, Wehner T, Zombori G, Kinghorn J, et al. A novel method for implementation of frameless StereoEEG in epilepsy surgery. Neurosurgery. 2014;10(4)(suppl 4):525534.

    • Search Google Scholar
    • Export Citation
  • 24

    Serletis D, Bulacio J, Bingaman W, Najm I, González-Martínez J. The stereotactic approach for mapping epileptic networks: a prospective study of 200 patients. J Neurosurg. 2014;121(5):12391246.

    • Search Google Scholar
    • Export Citation
  • 25

    Jung J, Bouet R, Delpuech C, Ryvlin P, Isnard J, Guenot M, et al. The value of magnetoencephalography for seizure-onset zone localization in magnetic resonance imaging-negative partial epilepsy. Brain. 2013;136(Pt 10):31763186.

    • Search Google Scholar
    • Export Citation
  • 26

    Mai R, Tassi L, Cossu M, Francione S, Lo Russo G, Garbelli R, et al. A neuropathological, stereo-EEG, and MRI study of subcortical band heterotopia. Neurology. 2003;60(11):18341838.

    • Search Google Scholar
    • Export Citation
  • 27

    Tassi L, Colombo N, Garbelli R, Francione S, Lo Russo G, Mai R, et al. Focal cortical dysplasia: neuropathological subtypes, EEG, neuroimaging and surgical outcome. Brain. 2002;125(Pt 8):1719-1732.

    • Search Google Scholar
    • Export Citation
  • 28

    Chassoux F, Devaux B, Landré E, Turak B, Nataf F, Varlet P, et al. Stereoelectroencephalography in focal cortical dysplasia: a 3D approach to delineating the dysplastic cortex. Brain. 2000;123(Pt 8):1733-1751.

    • Search Google Scholar
    • Export Citation
  • 29

    Tandon N, Tong BA, Friedman ER, Johnson JA, Von Allmen G, Thomas MS, et al. Analysis of morbidity and outcomes associated with use of subdural grids vs stereoelectroencephalography in patients with intractable epilepsy. JAMA Neurol. 2019;76(6):672681.

    • Search Google Scholar
    • Export Citation
  • 30

    Jeha LE, Najm I, Bingaman W, Dinner D, Widdess-Walsh P, Lüders H. Surgical outcome and prognostic factors of frontal lobe epilepsy surgery. Brain. 2007;130(Pt 2):574584.

    • Search Google Scholar
    • Export Citation
  • 31

    Najm I, Jehi L, Palmini A, Gonzalez-Martinez J, Paglioli E, Bingaman W. Temporal patterns and mechanisms of epilepsy surgery failure. Epilepsia. 2013;54(5):772782.

    • Search Google Scholar
    • Export Citation
  • 32

    Nobili L, Francione S, Mai R, Cardinale F, Castana L, Tassi L, et al. Surgical treatment of drug-resistant nocturnal frontal lobe epilepsy. Brain. 2007;130(Pt 2):561573.

    • Search Google Scholar
    • Export Citation
  • 33

    Harward SC, Chen WC, Rolston JD, Haglund MM, Englot DJ. Seizure outcomes in occipital lobe and posterior quadrant epilepsy surgery: a systematic review and meta-analysis. Neurosurgery. 2018;82(3):350358.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 414 414 204
Full Text Views 50 50 15
PDF Downloads 75 75 22
EPUB Downloads 0 0 0