Hemodynamic changes after intracranial aneurysm growth

View More View Less
  • 1 Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Amsterdam UMC, University of Amsterdam, Amsterdam;
  • | 2 Department of Biomedical Engineering and Physics, Amsterdam UMC, University of Amsterdam, Amsterdam; and
  • | 3 Technical Medical Center, University of Twente, Enschede, The Netherlands
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

OBJECTIVE

For accurate risk assessment of unruptured intracranial aneurysms, it is important to understand the underlying mechanisms that lead to rupture. It is known that hemodynamic anomalies contribute to aneurysm growth and rupture, and that growing aneurysms carry higher rupture risks. However, it is unknown how growth affects hemodynamic characteristics. In this study, the authors assessed how hemodynamic characteristics change over the course of aneurysm growth.

METHODS

The authors included patients with observed aneurysm growth on longitudinal MRA in the period between 2012 and 2016. Patient-specific vascular models were created from baseline and follow-up images. Subsequently, intraaneurysmal hemodynamic characteristics were computed using computational fluid dynamics. The authors computed the normalized wall shear stress, oscillatory shear index, and low shear area to quantify hemodynamic characteristics. Differences between baseline and follow-up measurements were analyzed using paired t-tests.

RESULTS

Twenty-five patients with a total of 31 aneurysms were included. The aneurysm volume increased by a median (IQR) of 26 (9–39) mm3 after a mean follow-up period of 4 (range 0.4–10.9) years. The median wall shear stress decreased significantly after growth. Other hemodynamic parameters did not change significantly, although large individual changes with large variability were observed.

CONCLUSIONS

Hemodynamic characteristics change considerably after aneurysm growth. On average, wall shear stress values decrease after growth, but there is a large variability in hemodynamic changes between aneurysms.

ABBREVIATIONS

CFD = computational fluid dynamics; LSA = low shear area; NWSS = normalized WSS; OSI = oscillatory shear index; WSS = wall shear stress.

Supplementary Materials

    • Supplemental Table 1 (PDF 457 KB)

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Vlak MHM, Algra A, Brandenburg R, Rinkel GJ. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 2011;10(7):626636.

    • Search Google Scholar
    • Export Citation
  • 2

    Brisman JL, Song JK, Newell DW. Cerebral aneurysms. N Engl J Med. 2006;355(9):928939.

  • 3

    Wiebers DO, Whisnant JP, Huston J III, Meissner I, Brown RD Jr, Piepgras DG, et al. Unruptured intracranial aneurysms: natural history, clinical outcome, and risks of surgical and endovascular treatment. Lancet. 2003;362(9378):103110.

    • Search Google Scholar
    • Export Citation
  • 4

    Greving JP, Wermer MJH, Brown RD Jr, Morita A, Juvela S, Yonekura M, et al. Development of the PHASES score for prediction of risk of rupture of intracranial aneurysms: a pooled analysis of six prospective cohort studies. Lancet Neurol. 2014;13(1):5966.

    • Search Google Scholar
    • Export Citation
  • 5

    Lindgren AE, Koivisto T, Björkman J, von Und Zu Fraunberg M, Helin K, Jääskeläinen JE, Frösen J. Irregular shape of intracranial aneurysm indicates rupture risk irrespective of size in a population-based cohort. Stroke. 2016;47(5):12191226.

    • Search Google Scholar
    • Export Citation
  • 6

    Xiang J, Natarajan SK, Tremmel M, Ma D, Mocco J, Hopkins LN, et al. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke. 2011;42(1):144152.

    • Search Google Scholar
    • Export Citation
  • 7

    Cebral J, Ollikainen E, Chung BJ, Mut F, Sippola V, Jahromi BR, et al. Flow conditions in intracranial aneurysm lumen associated with inflammation and degenerative changes of the aneurysm wall. AJNR Am J Neuroradiol. 2017;38(1):119126.

    • Search Google Scholar
    • Export Citation
  • 8

    Juvela S. Growth and rupture of unruptured intracranial aneurysms. J Neurosurg. 2018;131(3):843851.

  • 9

    Backes D, Vergouwen MDI, Tiel Groenestege AT, Bor AS, Velthuis BK, Greving JP, et al. PHASES score for prediction of intracranial aneurysm growth. Stroke. 2015;46(5):12211226.

    • Search Google Scholar
    • Export Citation
  • 10

    Meng H, Tutino VM, Xiang J, Siddiqui A. High WSS or low WSS? Complex interactions of hemodynamics with intracranial aneurysm initiation, growth, and rupture: toward a unifying hypothesis. AJNR Am J Neuroradiol. 2014;35(7):12541262.

    • Search Google Scholar
    • Export Citation
  • 11

    Tulamo R, Frösen J, Hernesniemi J, Niemelä M. Inflammatory changes in the aneurysm wall: a review. J Neurointerv Surg. 2010;2(2):120130.

    • Search Google Scholar
    • Export Citation
  • 12

    Xiang J, Tutino VM, Snyder KV, Meng H. CFD: computational fluid dynamics or confounding factor dissemination? The role of hemodynamics in intracranial aneurysm rupture risk assessment. AJNR Am J Neuroradiol. 2014;35(10):18491857.

    • Search Google Scholar
    • Export Citation
  • 13

    Boussel L, Rayz V, McCulloch C, Martin A, Acevedo-Bolton G, Lawton M, et al. Aneurysm growth occurs at region of low wall shear stress: patient-specific correlation of hemodynamics and growth in a longitudinal study. Stroke. 2008;39(11):29973002.

    • Search Google Scholar
    • Export Citation
  • 14

    Machi P, Ouared R, Brina O, Bouillot P, Yilmaz H, Vargas MI, et al. Hemodynamics of focal versus global growth of small cerebral aneurysms. Clin Neuroradiol. 2019;29(2):285293.

    • Search Google Scholar
    • Export Citation
  • 15

    Antiga L, Piccinelli M, Botti L, Ene-Iordache B, Remuzzi A, Steinman DA. An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput. 2008;46(11):10971112.

    • Search Google Scholar
    • Export Citation
  • 16

    Sato Y, Nakajima S, Shiraga N, Atsumi H, Yoshida S, Koller T, et al. Three-dimensional multi-scale line filter for segmentation and visualization of curvilinear structures in medical images. Med Image Anal. 1998;2(2):143168.

    • Search Google Scholar
    • Export Citation
  • 17

    Cremers D, Rousson M, Deriche R. A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int J Comput Vis. 2007;72(2):195215.

    • Search Google Scholar
    • Export Citation
  • 18

    Caretto LS, Gosman AD, Patankar SV, et al. Two calculation procedures for steady, three-dimensional flows with recirculation. Paper presented at Third International Conference on Numerical Methods in Fluid Mechanics; July 3-7, 1972; Paris, France.Accessed August 1, 2021. https://link.springer.com/chapter/10.1007/BFb0112677

    • Search Google Scholar
    • Export Citation
  • 19

    Cornelissen BMW, Schneiders JJ, Sprengers ME, van den Berg R, van Ooij P, Nederveen AJ, et al. Aneurysmal parent artery-specific inflow conditions for complete and incomplete circle of Willis configurations. AJNR Am J Neuroradiol. 2018;39(5):910915.

    • Search Google Scholar
    • Export Citation
  • 20

    Chnafa C, Brina O, Pereira VM, Steinman DA. Better than nothing: a rational approach for minimizing the impact of outflow strategy on cerebrovascular simulations. AJNR Am J Neuroradiol. 2018;39(2):337343.

    • Search Google Scholar
    • Export Citation
  • 21

    Valen-Sendstad K, Bergersen AW, Shimogonya Y, Goubergrits L, Bruening J, Pallares J, et al. Real-world variability in the prediction of intracranial aneurysm wall shear stress: The 2015 International Aneurysm CFD Challenge. Cardiovasc Eng Technol. 2018;9(4):544564.

    • Search Google Scholar
    • Export Citation
  • 22

    Can A, Du R. Association of hemodynamic factors with intracranial aneurysm formation and rupture: systematic review and meta-analysis. Neurosurgery. 2016;78(4):510520.

    • Search Google Scholar
    • Export Citation
  • 23

    Tremmel M, Dhar S, Levy EI, Mocco J, Meng H. Influence of intracranial aneurysm-to-parent vessel size ratio on hemodynamics and implication for rupture: results from a virtual experimental study. Neurosurgery. 2009;64(4):622631.

    • Search Google Scholar
    • Export Citation
  • 24

    Tanoue T, Tateshima S, Villablanca JP, Viñuela F, Tanishita K. Wall shear stress distribution inside growing cerebral aneurysm. AJNR Am J Neuroradiol. 2011;32(9):17321737.

    • Search Google Scholar
    • Export Citation
  • 25

    Sugiyama S, Meng H, Funamoto K, Inoue T, Fujimura M, Nakayama T, et al. Hemodynamic analysis of growing intracranial aneurysms arising from a posterior inferior cerebellar artery. World Neurosurg. 2012;78(5):462468.

    • Search Google Scholar
    • Export Citation
  • 26

    Sugiyama SI, Endo H, Omodaka S, Endo T, Niizuma K, Rashad S, et al. Daughter sac formation related to blood inflow jet in an intracranial aneurysm. World Neurosurg. 2016;96:396402.

    • Search Google Scholar
    • Export Citation
  • 27

    Sforza DM, Kono K, Tateshima S, Viñuela F, Putman C, Cebral JR. Hemodynamics in growing and stable cerebral aneurysms. J Neurointerv Surg. 2016;8(4):407412.

    • Search Google Scholar
    • Export Citation
  • 28

    Brinjikji W, Chung BJ, Jimenez C, Putman C, Kallmes DF, Cebral JR. Hemodynamic differences between unstable and stable unruptured aneurysms independent of size and location: a pilot study. J Neurointerv Surg. 2017;9(4):376380.

    • Search Google Scholar
    • Export Citation
  • 29

    Tateshima S, Tanishita K, Omura H, Villablanca JP, Vinuela F. Intra-aneurysmal hemodynamics during the growth of an unruptured aneurysm: in vitro study using longitudinal CT angiogram database. AJNR Am J Neuroradiol. 2007;28(4):622627.

    • Search Google Scholar
    • Export Citation
  • 30

    Cebral JR, Sheridan M, Putman CM. Hemodynamics and bleb formation in intracranial aneurysms. AJNR Am J Neuroradiol. 2010;31(2):304310.

    • Search Google Scholar
    • Export Citation
  • 31

    Russell JH, Kelson N, Barry M, Pearcy M, Fletcher DF, Winter CD. Computational fluid dynamic analysis of intracranial aneurysmal bleb formation. Neurosurgery. 2013;73(6):10611069.

    • Search Google Scholar
    • Export Citation
  • 32

    Kwak Y, Son W, Kim YS, Park J, Kang DH. Discrepancy between MRA and DSA in identifying the shape of small intracranial aneurysms. J Neurosurg. 2021;134(6):18871893.

    • Search Google Scholar
    • Export Citation
  • 33

    Jansen IGH, Schneiders JJ, Potters WV, van Ooij P, van den Berg R, van Bavel E, et al. Generalized versus patient-specific inflow boundary conditions in computational fluid dynamics simulations of cerebral aneurysmal hemodynamics. AJNR Am J Neuroradiol. 2014;35(8):15431548.

    • Search Google Scholar
    • Export Citation
  • 34

    Gottwald LM, Töger J, Markenroth Bloch K, Peper ES, Coolen BF, Strijkers GJ, et al. High spatiotemporal resolution 4D flow MRI of intracranial aneurysms at 7T in 10 minutes. AJNR Am J Neuroradiol. 2020;41(7):12011208.

    • Search Google Scholar
    • Export Citation
  • 35

    Matouk CC, Mandell DM, Günel M, Bulsara KR, Malhotra A, Hebert R, et al. Vessel wall magnetic resonance imaging identifies the site of rupture in patients with multiple intracranial aneurysms: proof of principle. Neurosurgery. 2013;72(3):492496.

    • Search Google Scholar
    • Export Citation
  • 36

    Omodaka S, Endo H, Niizuma K, Fujimura M, Inoue T, Sato K, et al. Quantitative assessment of circumferential enhancement along the wall of cerebral aneurysms using MR imaging. AJNR Am J Neuroradiol. 2016;37(7):12621266.

    • Search Google Scholar
    • Export Citation
  • 37

    Cornelissen BMW, Leemans EL, Coolen BF, Peper ES, van den Berg R, Marquering HA, et al. Insufficient slow-flow suppression mimicking aneurysm wall enhancement in magnetic resonance vessel wall imaging: a phantom study. Neurosurg Focus. 2019;47(1):E19.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 210 210 171
Full Text Views 53 53 40
PDF Downloads 64 64 46
EPUB Downloads 0 0 0