The influence of aneurysm morphology on the volume of hemorrhage after rupture

View More View Less
  • 1 Department of Neurosurgery, Hospital Universitario 12 de Octubre;
  • | 2 Universidad Complutense de Madrid;
  • | 3 Department of Neurosurgery, Hospital Universitario La Princesa; and
  • | 4 Department of Radiology, Hospital Universitario 12 de Octubre, Madrid, Spain
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

OBJECTIVE

Factors determining the risk of rupture of intracranial aneurysms have been extensively studied; however, little attention is paid to variables influencing the volume of bleeding after rupture. In this study the authors aimed to evaluate the impact of aneurysm morphological variables on the amount of hemorrhage.

METHODS

This was a retrospective cohort analysis of a prospectively collected data set of 116 patients presenting at a single center with subarachnoid hemorrhage due to aneurysmal rupture. A volumetric assessment of the total hemorrhage volume was performed from the initial noncontrast CT. Aneurysms were segmented and reproduced from the initial CT angiography study, and morphology indexes were calculated with a computer-assisted approach. Clinical and demographic characteristics of the patients were included in the study. Factors influencing the volume of hemorrhage were explored with univariate correlations, multiple linear regression analysis, and graphical probabilistic modeling.

RESULTS

The univariate analysis demonstrated that several of the morphological variables but only the patient’s age from the clinical-demographic variables correlated (p < 0.05) with the volume of bleeding. Nine morphological variables correlated positively (absolute height, perpendicular height, maximum width, sac surface area, sac volume, size ratio, bottleneck factor, neck-to-vessel ratio, and width-to-vessel ratio) and two correlated negatively (parent vessel average diameter and the aneurysm angle). After multivariate analysis, only the aneurysm size ratio (p < 0.001) and the patient’s age (p = 0.023) remained statistically significant. The graphical probabilistic model confirmed the size ratio and the patient’s age as the variables most related to the total hemorrhage volume.

CONCLUSIONS

A greater aneurysm size ratio and an older patient age are likely to entail a greater volume of bleeding after subarachnoid hemorrhage.

ABBREVIATIONS

CTA = CT angiography; IA = intracranial aneurysm; SAH = subarachnoid hemorrhage; SR = size ratio; WFNS = World Federation of Neurosurgical Societies.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Rinkel GJE, Djibuti M, Algra A, van Gijn J. Prevalence and risk of rupture of intracranial aneurysms: a systematic review. Stroke. 1998;29(1):251256.

    • Search Google Scholar
    • Export Citation
  • 2

    Vlak MH, Algra A, Brandenburg R, Rinkel GJ. Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis. Lancet Neurol. 2011;10(7):626636.

    • Search Google Scholar
    • Export Citation
  • 3

    Juvela S, Poussa K, Lehto H, Porras M. Natural history of unruptured intracranial aneurysms: a long-term follow-up study. Stroke. 2013;44(9):24142421.

    • Search Google Scholar
    • Export Citation
  • 4

    Claassen J, Bernardini GL, Kreiter K, et al. Effect of cisternal and ventricular blood on risk of delayed cerebral ischemia after subarachnoid hemorrhage: the Fisher scale revisited. Stroke. 2001;32(9):20122020.

    • Search Google Scholar
    • Export Citation
  • 5

    Rosengart AJ, Schultheiss KE, Tolentino J, Macdonald RL. Prognostic factors for outcome in patients with aneurysmal subarachnoid hemorrhage. Stroke. 2007;38(8):23152321.

    • Search Google Scholar
    • Export Citation
  • 6

    Lagares A, Jiménez-Roldán L, Gomez PA, et al. Prognostic value of the amount of bleeding after aneurysmal subarachnoid hemorrhage: a quantitative volumetric study. Neurosurgery. 2015;77(6):898907.

    • Search Google Scholar
    • Export Citation
  • 7

    Zijlstra IA, Gathier CS, Boers AM, et al. Association of automatically quantified total blood volume after aneurysmal subarachnoid hemorrhage with delayed cerebral ischemia. AJNR Am J Neuroradiol. 2016;37(9):15881593.

    • Search Google Scholar
    • Export Citation
  • 8

    van der Steen WE, Marquering HA, Boers AMM, et al. Predicting delayed cerebral ischemia with quantified aneurysmal subarachnoid blood volume. World Neurosurg. 2019;130:e613e619.

    • Search Google Scholar
    • Export Citation
  • 9

    Ishihara H, Oka F, Kawano R, et al. Hounsfield unit value of interpeduncular cistern hematomas can predict symptomatic vasospasm. Stroke. 2020;51(1):143148.

    • Search Google Scholar
    • Export Citation
  • 10

    Jiménez-Roldán L, Alén JF, Gómez PA, et al. Volumetric analysis of subarachnoid hemorrhage: assessment of the reliability of two computerized methods and their comparison with other radiographic scales. J Neurosurg. 2013;118(1):8493.

    • Search Google Scholar
    • Export Citation
  • 11

    Ko SB, Choi HA, Carpenter AM, et al. Quantitative analysis of hemorrhage volume for predicting delayed cerebral ischemia after subarachnoid hemorrhage. Stroke. 2011;42(3):669674.

    • Search Google Scholar
    • Export Citation
  • 12

    Russell SM, Lin K, Hahn SA, Jafar JJ. Smaller cerebral aneurysms producing more extensive subarachnoid hemorrhage following rupture: a radiological investigation and discussion of theoretical determinants. J Neurosurg. 2003;99(2):248253.

    • Search Google Scholar
    • Export Citation
  • 13

    Rosen DS, Amidei C, Tolentino J, et al. Subarachnoid clot volume correlates with age, neurological grade, and blood pressure. Neurosurgery. 2007;60(2):259267.

    • Search Google Scholar
    • Export Citation
  • 14

    Lagares A, Gómez PA, Alén JF, et al. Aneurysmal subarachnoid hemorrhage: group of study of cerebrovascular pathology of the Spanish society of neurosurgery management guideline. Neurocirugia (Astur). 2011;22(2):93115.

    • Search Google Scholar
    • Export Citation
  • 15

    Munarriz PM, Bárcena E, Alén JF, et al. Reliability and accuracy assessment of morphometric measurements obtained with software for three-dimensional reconstruction of brain aneurysms relative to cerebral angiography measures. Interv Neuroradiol. 2021;27(2):191199.

    • Search Google Scholar
    • Export Citation
  • 16

    Antiga L, Piccinelli M, Botti L, et al. An image-based modeling framework for patient-specific computational hemodynamics. Med Biol Eng Comput. 2008;46(11):10971112.

    • Search Google Scholar
    • Export Citation
  • 17

    Piccinelli M, Veneziani A, Steinman DA, et al. A framework for geometric analysis of vascular structures: application to cerebral aneurysms. IEEE Trans Med Imaging. 2009;28(8):11411155.

    • Search Google Scholar
    • Export Citation
  • 18

    Varble N, Tutino VM, Yu J, et al. Shared and distinct rupture discriminants of small and large intracranial aneurysms. Stroke. 2018;49(4):856864.

    • Search Google Scholar
    • Export Citation
  • 19

    Mocco J, Brown RD Jr, Torner JC, et al. Aneurysm morphology and prediction of rupture: an International Study of Unruptured Intracranial Aneurysms analysis. Neurosurgery. 2018;82(4):491496.

    • Search Google Scholar
    • Export Citation
  • 20

    Xiang J, Natarajan SK, Tremmel M, et al. Hemodynamic-morphologic discriminants for intracranial aneurysm rupture. Stroke. 2011;42(1):144152.

    • Search Google Scholar
    • Export Citation
  • 21

    Detmer FJ, Chung BJ, Jimenez C, et al. Associations of hemodynamics, morphology, and patient characteristics with aneurysm rupture stratified by aneurysm location. Neuroradiology. 2019;61(3):275284.

    • Search Google Scholar
    • Export Citation
  • 22

    Chung BJ, Mut F, Putman CM, et al. Identification of hostile hemodynamics and geometries of cerebral aneurysms: a case-control study. AJNR Am J Neuroradiol. 2018;39(10):18601866.

    • Search Google Scholar
    • Export Citation
  • 23

    Chien A, Xu M, Yokota H, et al. Nonsphericity index and size ratio identify morphologic differences between growing and stable aneurysms in a longitudinal study of 93 cases. AJNR Am J Neuroradiol. 2018;39(3):500506.

    • Search Google Scholar
    • Export Citation
  • 24

    Roos EJ, Rinkel GJ, Velthuis BK, Algra A. The relation between aneurysm size and outcome in patients with subarachnoid hemorrhage. Neurology. 2000;54(12):23342336.

    • Search Google Scholar
    • Export Citation
  • 25

    Salary M, Quigley MR, Wilberger JE Jr. Relation among aneurysm size, amount of subarachnoid blood, and clinical outcome. J Neurosurg. 2007;107(1):1317.

    • Search Google Scholar
    • Export Citation
  • 26

    Munarriz PM, Gómez PA, Paredes I, et al. Basic principles of hemodynamics and cerebral aneurysms. World Neurosurg. 2016;88:311319.

  • 27

    Raghavan ML, Ma B, Harbaugh RE. Quantified aneurysm shape and rupture risk. J Neurosurg. 2005;102(2):355362.

  • 28

    Dhar S, Tremmel M, Mocco J, et al. Morphology parameters for intracranial aneurysm rupture risk assessment. Neurosurgery. 2008;63(2):185197.

    • Search Google Scholar
    • Export Citation
  • 29

    Backes D, Rinkel GJE, Laban KG, et al. Patient- and aneurysm-specific risk factors for intracranial aneurysm growth: a systematic review and meta-analysis. Stroke. 2016;47(4):951957.

    • Search Google Scholar
    • Export Citation
  • 30

    Backes D, Rinkel GJE, Greving JP, et al. ELAPSS score for prediction of risk of growth of unruptured intracranial aneurysms. Neurology. 2017;88(17):16001606.

    • Search Google Scholar
    • Export Citation
  • 31

    Lanzino G, Kassell NF, Germanson TP, et al. Age and outcome after aneurysmal subarachnoid hemorrhage: why do older patients fare worse? J Neurosurg. 1996;85(3):410418.

    • Search Google Scholar
    • Export Citation
  • 32

    Larrabide I, Cruz Villa-Uriol M, Cárdenes R, et al. Three-dimensional morphological analysis of intracranial aneurysms: a fully automated method for aneurysm sac isolation and quantification. Med Phys. 2011;38(5):24392449.

    • Search Google Scholar
    • Export Citation
  • 33

    Rajabzadeh-Oghaz H, Varble N, Shallwani H, et al. Computer-assisted three-dimensional morphology evaluation of intracranial aneurysms. World Neurosurg. 2018;119:e541e550.

    • Search Google Scholar
    • Export Citation
  • 34

    Lauric A, Baharoglu MI, Malek AM. Ruptured status discrimination performance of aspect ratio, height/width, and bottleneck factor is highly dependent on aneurysm sizing methodology. Neurosurgery. 2012;71(1):3845.

    • Search Google Scholar
    • Export Citation
  • 35

    Kocur D, Przybyłko N, Niedbała M, Rudnik A. Alternative definitions of cerebral aneurysm morphologic parameters have an impact on rupture risk determination. World Neurosurg. 2019;126:e157e164.

    • Search Google Scholar
    • Export Citation
  • 36

    Rahman M, Ogilvy CS, Zipfel GJ, et al. Unruptured cerebral aneurysms do not shrink when they rupture: multicenter collaborative aneurysm study group. Neurosurgery. 2011;68(1):155161.

    • Search Google Scholar
    • Export Citation
  • 37

    Yi J, Zielinski D, Chen M. Cerebral aneurysm size before and after rupture: case series and literature review. J Stroke Cerebrovasc Dis. 2016;25(5):12441248.

    • Search Google Scholar
    • Export Citation
  • 38

    Chien A, Sayre J. Morphologic and hemodynamic risk factors in ruptured aneurysms imaged before and after rupture. AJNR Am J Neuroradiol. 2014;35(11):21302135.

    • Search Google Scholar
    • Export Citation
  • 39

    Cornelissen BMW, Schneiders JJ, Potters WV, et al. Hemodynamic differences in intracranial aneurysms before and after rupture. AJNR Am J Neuroradiol. 2015;36(10):19271933.

    • Search Google Scholar
    • Export Citation
  • 40

    Schneiders JJ, Marquering HA, van den Berg R, et al. Rupture-associated changes of cerebral aneurysm geometry: high-resolution 3D imaging before and after rupture. AJNR Am J Neuroradiol. 2014;35(7):13581362.

    • Search Google Scholar
    • Export Citation
  • 41

    Skodvin , Johnsen LH, Gjertsen Ø, et al. Cerebral aneurysm morphology before and after rupture: nationwide case series of 29 aneurysms. Stroke. 2017;48(4):880886.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 260 260 203
Full Text Views 65 65 56
PDF Downloads 82 82 69
EPUB Downloads 0 0 0