Utility of indocyanine green in the detection of radiologically silent hemangioblastomas: case report

View More View Less
  • 1 Department of Neurosurgery, Medical University of Vienna, Austria;
  • 2 Department of Neurosurgery, Alicante General University Hospital (HGUA), Alicante, Spain;
  • 3 Department of Neurosurgery, Helsinki University Hospital, Helsinki, Finland; and
  • 4 Department of Neurosurgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

Hemangioblastomas (HBs) are rare, benign, hypervascularized tumors. Fluorescent imaging with indocyanine green (ICG) can visualize tumor angioarchitecture. The authors report a case of multiple HBs involving two radiologically silent lesions only detected intraoperatively by ICG fluorescence. A 26-year-old woman presented with a cystic cerebellar mass on the tentorial surface of the left cerebellar hemisphere on MRI. A left paramedian suboccipital approach was performed to remove the mural nodule with the aid of ICG injection. The first injection, applied just prior to removing the nodule, highlighted the tumor and vessels. After resection, two new lesions, invisible on the preoperative MRI, surprisingly enhanced on fluorescent imaging 35 minutes after the ICG bolus. Both silent lesions were removed. Histological analysis of all three lesions revealed they were positive for HB. The main goal of this report is to hypothesize possible explanations about the mechanism that led to the behavior of the two silent lesions. Intraoperative ICG videoangiography was useful to understand the 3D angioarchitecture and HB flow patterns to perform a safe and complete resection in this case. Understanding the HB ultrastructure and pathophysiological mechanisms, in conjunction with the properties of ICG, may expand potential applications for their diagnosis and future treatments.

ABBREVIATIONS BBB = blood-brain barrier; HB = hemangioblastoma; ICG = indocyanine green; VEGF = vascular endothelial growth factor; VHL = von Hippel–Lindau.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Pablo González-López: Alicante General University Hospital (HGUA), Alicante, Spain. gonzalez_pab@gva.es.

INCLUDE WHEN CITING Published online February 12, 2021; DOI: 10.3171/2020.8.JNS202176.

Disclosures The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

  • 1

    Conway JE, Chou D, Clatterbuck RE, Hemangioblastomas of the central nervous system in von Hippel-Lindau syndrome and sporadic disease. Neurosurgery. 2001;48(1):5563.

    • Search Google Scholar
    • Export Citation
  • 2

    Prokopienko M, Kunert P, Podgórska A, Marchel A. Surgical treatment of sporadic and von Hippel-Lindau syndrome-associated intramedullary hemangioblastomas. Neurol Neurochir Pol. 2016;50(5):349355.

    • Search Google Scholar
    • Export Citation
  • 3

    Ampie L, Choy W, Lamano JB, Safety and outcomes of preoperative embolization of intracranial hemangioblastomas: a systematic review. Clin Neurol Neurosurg. 2016;150:143151.

    • Search Google Scholar
    • Export Citation
  • 4

    Kim EH, Cho JM, Chang JH, Application of intraoperative indocyanine green videoangiography to brain tumor surgery. Acta Neurochir (Wien). 2011;153(7):14871495.

    • Search Google Scholar
    • Export Citation
  • 5

    Kumon Y, Watanabe H, Ohue S, Ohnishi T. ICG videoangiography in neurosurgical procedures. In: Kusano M, Kokudo N, Toi M, Kaibori M, eds. ICG Fluorescence Imaging and Navigation Surgery. Springer Japan; 2016:3145.

    • Search Google Scholar
    • Export Citation
  • 6

    Acerbi F, Vetrano IG, Sattin T, The role of indocyanine green videoangiography with FLOW 800 analysis for the surgical management of central nervous system tumors: an update. Neurosurg Focus. 2018;44(6):E6.

    • Search Google Scholar
    • Export Citation
  • 7

    Tamura Y, Hirota Y, Miyata S, The use of intraoperative near-infrared indocyanine green videoangiography in the microscopic resection of hemangioblastomas. Acta Neurochir (Wien). 2012;154(8):14071412.

    • Search Google Scholar
    • Export Citation
  • 8

    Shinya T, Nagamine H, Sugawara K-I, Ishiuchi S. The usefulness of indocyanine green during surgery for hypervascular posterior fossa tumors. Surg Neurol Int. 2018;9:90.

    • Search Google Scholar
    • Export Citation
  • 9

    Hojo M, Arakawa Y, Funaki T, Usefulness of tumor blood flow imaging by intraoperative indocyanine green videoangiography in hemangioblastoma surgery. World Neurosurg. 2014;82(3-4):e495e501.

    • Search Google Scholar
    • Export Citation
  • 10

    Murai Y, Adachi K, Matano F, Indocyanin green videoangiography study of hemangioblastomas. Can J Neurol Sci. 2011;38(1):4147.

  • 11

    Bains SJ, Niehusmann PF, Meling TR, Disseminated central nervous system hemangioblastoma in a patient with no clinical or genetic evidence of von Hippel-Lindau disease—a case report and literature review. Acta Neurochir (Wien). 2019;161(2):343349.

    • Search Google Scholar
    • Export Citation
  • 12

    Lacruz CR, Saénz de Santamaría J, Bardales RH. Non-meningothelial mesenchymal tumors. In: Central Nervous System Intraoperative Cytopathology. Springer; 2018:233253.

    • Search Google Scholar
    • Export Citation
  • 13

    Resche F, Moisan JP, Mantoura J, Haemangioblastoma, haemangioblastomatosis, and von Hippel-Lindau disease. Adv Tech Stand Neurosurg. 1993;20:197304.

    • Search Google Scholar
    • Export Citation
  • 14

    Hao S, Li D, Ma G, Application of intraoperative indocyanine green videoangiography for resection of spinal cord hemangioblastoma: advantages and limitations. J Clin Neurosci. 2013;20(9):12691275.

    • Search Google Scholar
    • Export Citation
  • 15

    Molina CA, Pennington Z, Ahmed AK, Use of intraoperative indocyanine green angiography for feeder vessel ligation and en bloc resection of intramedullary hemangioblastoma. Oper Neurosurg (Hagerstown). 2019;17(6):573579.

    • Search Google Scholar
    • Export Citation
  • 16

    Porcu EP, Salis A, Gavini E, Indocyanine green delivery systems for tumour detection and treatments. Biotechnol Adv. 2016;34(5):768789.

    • Search Google Scholar
    • Export Citation
  • 17

    Fickweiler S, Szeimies R-M, Bäumler W, Indocyanine green: intracellular uptake and phototherapeutic effects in vitro. J Photochem Photobiol B. 1997;38(2-3):178183.

    • Search Google Scholar
    • Export Citation
  • 18

    Boni L, David G, Mangano A, Clinical applications of indocyanine green (ICG) enhanced fluorescence in laparoscopic surgery. Surg Endosc. 2015;29(7):20462055.

    • Search Google Scholar
    • Export Citation
  • 19

    Lim C, Vibert E, Azoulay D, Indocyanine green fluorescence imaging in the surgical management of liver cancers: current facts and future implications. J Visc Surg. 2014;151(2):117124.

    • Search Google Scholar
    • Export Citation
  • 20

    Baker KJ. Binding of sulfobromophthalein (BSP) sodium and indocyanine green (ICG) by plasma alpha-1 lipoproteins. Proc Soc Exp Biol Med. 1966;122(4):957963.

    • Search Google Scholar
    • Export Citation
  • 21

    Benson RC, Kues HA. Fluorescence properties of indocyanine green as related to angiography. Phys Med Biol. 1978;23(1):159163.

  • 22

    Desmettre T, Devoisselle JM, Mordon S. Fluorescence properties and metabolic features of indocyanine green (ICG) as related to angiography. Surv Ophthalmol. 2000;45(1):1527.

    • Search Google Scholar
    • Export Citation
  • 23

    Yannuzzi LA, Sorenson JA, Guyer DR, Indocyanine green videoangiography: current status. Eur J Ophthalmol. 1994;4(2):6981.

  • 24

    Holt D, Okusanya O, Judy R, Intraoperative near-infrared imaging can distinguish cancer from normal tissue but not inflammation. PLoS One. 2014;9(7):e103342.

    • Search Google Scholar
    • Export Citation
  • 25

    Hansen DA, Spence AM, Carski T, Berger MS. Indocyanine green (ICG) staining and demarcation of tumor margins in a rat glioma model. Surg Neurol. 1993;40(6):451456.

    • Search Google Scholar
    • Export Citation
  • 26

    Chen WR, Adams RL, Higgins AK, Photothermal effects on murine mammary tumors using indocyanine green and an 808-nm diode laser: an in vivo efficacy study. Cancer Lett. 1996;98(2):169173.

    • Search Google Scholar
    • Export Citation
  • 27

    Jiang JX, Keating JJ, Jesus EM, Optimization of the enhanced permeability and retention effect for near-infrared imaging of solid tumors with indocyanine green. Am J Nucl Med Mol Imaging. 2015;5(4):390400.

    • Search Google Scholar
    • Export Citation
  • 28

    Heneweer C, Holland JP, Divilov V, Magnitude of enhanced permeability and retention effect in tumors with different phenotypes: 89Zr-albumin as a model system. J Nucl Med. 2011;52(4):625633.

    • Search Google Scholar
    • Export Citation
  • 29

    Desser TS, Rubin DL, Muller HH, Dynamics of tumor imaging with Gd-DTPA-polyethylene glycol polymers: dependence on molecular weight. J Magn Reson Imaging. 1994;4(3):467472.

    • Search Google Scholar
    • Export Citation
  • 30

    Morita Y, Sakaguchi T, Unno N, Detection of hepatocellular carcinomas with near-infrared fluorescence imaging using indocyanine green: its usefulness and limitation. Int J Clin Oncol. 2013;18(2):232241.

    • Search Google Scholar
    • Export Citation
  • 31

    Yokoyama N, Otani T, Hashidate H, Real-time detection of hepatic micrometastases from pancreatic cancer by intraoperative fluorescence imaging: preliminary results of a prospective study. Cancer. 2012;118(11):28132819.

    • Search Google Scholar
    • Export Citation
  • 32

    Ntziachristos V, Yodh AG, Schnall M, Chance B. Concurrent MRI and diffuse optical tomography of breast after indocyanine green enhancement. Proc Natl Acad Sci U S A. 2000;97(6):27672772.

    • Search Google Scholar
    • Export Citation
  • 33

    Hashizume H, Baluk P, Morikawa S, Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol. 2000;156(4):13631380.

    • Search Google Scholar
    • Export Citation
  • 34

    Feng D, Nagy JA, Dvorak HF, Dvorak AM. Ultrastructural studies define soluble macromolecular, particulate, and cellular transendothelial cell pathways in venules, lymphatic vessels, and tumor-associated microvessels in man and animals. Microsc Res Tech. 2002;57(5):289326.

    • Search Google Scholar
    • Export Citation
  • 35

    Carmeliet P, Jain RK. Angiogenesis in cancer and other diseases. Nature. 2000;407(6801):249257.

  • 36

    Hielscher AH, Bluestone AY, Abdoulaev GS, Near-infrared diffuse optical tomography. Dis Markers. 2002;18(5-6):313337.

  • 37

    Hagen A, Grosenick D, Macdonald R, Late-fluorescence mammography assesses tumor capillary permeability and differentiates malignant from benign lesions. Opt Express. 2009;17(19):1701617033.

    • Search Google Scholar
    • Export Citation
  • 38

    Dreher MR, Liu W, Michelich CR, Tumor vascular permeability, accumulation, and penetration of macromolecular drug carriers. J Natl Cancer Inst. 2006;98(5):335344.

    • Search Google Scholar
    • Export Citation
  • 39

    Kumar ATN, Carp SA, Yang J, Fluorescence lifetime-based contrast enhancement of indocyanine green-labeled tumors. J Biomed Opt. 2017;22(4):40501.

    • Search Google Scholar
    • Export Citation
  • 40

    Ishizawa T, Fukushima N, Shibahara J, Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer. 2009;115(11):24912504.

    • Search Google Scholar
    • Export Citation
  • 41

    Ho KL. Ultrastructure of cerebellar capillary hemangioblastoma. IV. Pericytes and their relationship to endothelial cells. Acta Neuropathol. 1985;67(3-4):254264.

    • Search Google Scholar
    • Export Citation
  • 42

    Chen Y, Tachibana O, Hasegawa M, Absence of tight junctions between microvascular endothelial cells in human cerebellar hemangioblastomas. Neurosurgery. 2006;59(3):660670.

    • Search Google Scholar
    • Export Citation
  • 43

    Lohle PN, Wurzer HA, Seelen PJ, The pathogenesis of cysts accompanying intra-axial primary and metastatic tumors of the central nervous system. J Neurooncol. 1998;40(3):277285.

    • Search Google Scholar
    • Export Citation
  • 44

    Gläsker S, Vortmeyer AO, Lonser RR, Proteomic analysis of hemangioblastoma cyst fluid. Cancer Biol Ther. 2006;5(5):549553.

  • 45

    Liebner S, Fischmann A, Rascher G, Claudin-1 and claudin-5 expression and tight junction morphology are altered in blood vessels of human glioblastoma multiforme. Acta Neuropathol. 2000;100(3):323331.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 179 179 179
Full Text Views 24 24 24
PDF Downloads 15 15 15
EPUB Downloads 0 0 0