A literature review of magnetic resonance imaging sequence advancements in visualizing functional neurosurgery targets

View More View Less
  • 1 University Health Network, Toronto;
  • 2 Joint Department of Medical Imaging, University of Toronto, Ontario, Canada;
  • 3 Functional Neurosurgery Unit, Department of Clinical and Movement Neurosciences, University College London, Queen Square Institute of Neurology, The National Hospital for Neurology and Neurosurgery, London, United Kingdom;
  • 4 Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, University Health Network, Division of Neurology, University of Toronto;
  • 5 Krembil Brain Institute, Toronto, Ontario;
  • 6 Department of Psychology, Concordia University, Montreal, Quebec, Canada; and
  • 7 Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

OBJECTIVE

Historically, preoperative planning for functional neurosurgery has depended on the indirect localization of target brain structures using visible anatomical landmarks. However, recent technological advances in neuroimaging have permitted marked improvements in MRI-based direct target visualization, allowing for refinement of “first-pass” targeting. The authors reviewed studies relating to direct MRI visualization of the most common functional neurosurgery targets (subthalamic nucleus, globus pallidus, and thalamus) and summarize sequence specifications for the various approaches described in this literature.

METHODS

The peer-reviewed literature on MRI visualization of the subthalamic nucleus, globus pallidus, and thalamus was obtained by searching MEDLINE. Publications examining direct MRI visualization of these deep brain stimulation targets were included for review.

RESULTS

A variety of specialized sequences and postprocessing methods for enhanced MRI visualization are in current use. These include susceptibility-based techniques such as quantitative susceptibility mapping, which exploit the amount of tissue iron in target structures, and white matter attenuated inversion recovery, which suppresses the signal from white matter to improve the distinction between gray matter nuclei. However, evidence confirming the superiority of these sequences over indirect targeting with respect to clinical outcome is sparse. Future targeting may utilize information about functional and structural networks, necessitating the use of resting-state functional MRI and diffusion-weighted imaging.

CONCLUSIONS

Specialized MRI sequences have enabled considerable improvement in the visualization of common deep brain stimulation targets. With further validation of their ability to improve clinical outcomes and advances in imaging techniques, direct visualization of targets may play an increasingly important role in preoperative planning.

ABBREVIATIONS ANT = anterior nucleus of the thalamus; CNR = contrast-to-noise ratio; DBS = deep brain stimulation; DWI = diffusion-weighted imaging; ET = essential tremor; FGATIR = fast gray matter acquisition T1 inversion recovery; FLASH = fast low-angle shot; FLAWS = fluid and white matter sequence; GP = globus pallidus; GPe = GP externus; GPi = GP internus; GRE = gradient echo; IR = inversion recovery; MDEFT = modified equilibrium Fourier transform; MPRAGE = magnetization-prepared rapid acquisition with gradient echo; PD = Parkinson’s disease; PDW = proton density–weighted; PSIR = phase-sensitive inversion recovery; QSM = quantitative susceptibility mapping; rsfMRI = resting-state functional MRI; SN = substantia nigra; SNR = signal-to-noise ratio; SPACE = sampling perfection with application-optimized contrasts by using different flip angle evolution; STIR = short T1 inversion recovery; STN = subthalamic nucleus; SWI = susceptibility-weighted imaging; T1W = T1-weighted; T2W = T2-weighted; T2*W = T2-star-weighted; UHF = ultra–high-field; VC = ventrocaudal; VIM = ventral intermediate nucleus; WAIR = white matter attenuated inversion recovery.

Supplementary Materials

    • Supplementary Table and Figures (PDF 2,851 KB)

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Andres M. Lozano: Toronto Western Hospital, Toronto, ON, Canada. lozano@uhnresearch.ca.

A.B. and A.L. contributed equally to this work.

INCLUDE WHEN CITING Published online March 26, 2021; DOI: 10.3171/2020.8.JNS201125.

Disclosures Dr. Zrinzo: consultant for Medtronic, Boston Scientific, and Elekta. Dr. Kalia: consultant for and honoraria from Medtronic. Dr. Fasano: grants, personal fees, and nonfinancial support from Abbvie, Medtronic, and Boston Scientific; personal fees from Sunovion, Chiesi Farmaceutici, and UCB; and grants and personal fees from Ipsen. Dr. Lozano: consultant for Medtronic, Boston Scientific, Abbott, and Insightec; and scientific director of Functional Neuromodulation.

  • 1

    Lozano AM, Lipsman N. Probing and regulating dysfunctional circuits using deep brain stimulation. Neuron. 2013;77(3):406424.

  • 2

    Lozano AM, Lipsman N, Bergman H, . Deep brain stimulation: current challenges and future directions. Nat Rev Neurol. 2019;15(3):148160.

    • Search Google Scholar
    • Export Citation
  • 3

    Leksell L, Leksell D, Schwebel J. Stereotaxis and nuclear magnetic resonance. J Neurol Neurosurg Psychiatry. 1985;48(1):1418.

  • 4

    Lemaire JJ, Coste J, Ouchchane L, . Brain mapping in stereotactic surgery: a brief overview from the probabilistic targeting to the patient-based anatomic mapping. Neuroimage. 2007;37(suppl 1):S109S115.

    • Search Google Scholar
    • Export Citation
  • 5

    Patel NK, Khan S, Gill SS. Comparison of atlas- and magnetic-resonance-imaging-based stereotactic targeting of the subthalamic nucleus in the surgical treatment of Parkinson’s disease. Stereotact Funct Neurosurg. 2008;86(3):153161.

    • Search Google Scholar
    • Export Citation
  • 6

    Bejjani BP, Dormont D, Pidoux B, . Bilateral subthalamic stimulation for Parkinson’s disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg. 2000;92(4):615625.

    • Search Google Scholar
    • Export Citation
  • 7

    Zrinzo L, Hariz M, Hyam JA, . A paradigm shift toward MRI-guided and MRI-verified DBS surgery. Letter. J Neurosurg. 2016;124(4):11351138.

    • Search Google Scholar
    • Export Citation
  • 8

    Boutet A, Gramer R, Steele CJ, . Neuroimaging technological advancements for targeting in functional neurosurgery. Curr Neurol Neurosci Rep. 2019;19(7):42.

    • Search Google Scholar
    • Export Citation
  • 9

    Nölte IS, Gerigk L, Al-Zghloul M, . Visualization of the internal globus pallidus: sequence and orientation for deep brain stimulation using a standard installation protocol at 3.0 Tesla. Acta Neurochir (Wien). 2012;154(3):481494.

    • Search Google Scholar
    • Export Citation
  • 10

    Ranjan M, Boutet A, Xu DS, . Subthalamic nucleus visualization on routine clinical preoperative MRI scans: a retrospective study of clinical and image characteristics predicting its visualization. Stereotact Funct Neurosurg. 2018;96(2):120126.

    • Search Google Scholar
    • Export Citation
  • 11

    Aviles-Olmos I, Kefalopoulou Z, Tripoliti E, . Long-term outcome of subthalamic nucleus deep brain stimulation for Parkinson’s disease using an MRI-guided and MRI-verified approach. J Neurol Neurosurg Psychiatry. 2014;85(12):14191425.

    • Search Google Scholar
    • Export Citation
  • 12

    Benabid AL, Koudsie A, Benazzouz A, . Imaging of subthalamic nucleus and ventralis intermedius of the thalamus. Mov Disord. 2002;17(suppl 3):S123S129.

    • Search Google Scholar
    • Export Citation
  • 13

    Vassal F, Coste J, Derost P, . Direct stereotactic targeting of the ventrointermediate nucleus of the thalamus based on anatomic 1.5-T MRI mapping with a white matter attenuated inversion recovery (WAIR) sequence. Brain Stimul. 2012;5(4):625633.

    • Search Google Scholar
    • Export Citation
  • 14

    Bender B, Mänz C, Korn A, . Optimized 3D magnetization-prepared rapid acquisition of gradient echo: identification of thalamus substructures at 3T. AJNR Am J Neuroradiol. 2011;32(11):21102115.

    • Search Google Scholar
    • Export Citation
  • 15

    Hirabayashi H, Tengvar M, Hariz MI. Stereotactic imaging of the pallidal target. Mov Disord. 2002;17(suppl 3):S130S134.

  • 16

    Liu T, Eskreis-Winkler S, Schweitzer AD, . Improved subthalamic nucleus depiction with quantitative susceptibility mapping. Radiology. 2013;269(1):216223.

    • Search Google Scholar
    • Export Citation
  • 17

    Arksey H, O’Malley L. Scoping studies: towards a methodological framework. Int J Soc Res Methodol. 2005;8(1):1932.

  • 18

    Levac D, Colquhoun H, O’Brien KK. Scoping studies: advancing the methodology. Implement Sci. 2010;5:69.

  • 19

    Mavridis I, Boviatsis E, Anagnostopoulou S. Anatomy of the human subthalamic nucleus: a combined morphometric study. Anat Res Int. 2013;2013:319710.

    • Search Google Scholar
    • Export Citation
  • 20

    Weintraub DB, Zaghloul KA. The role of the subthalamic nucleus in cognition. Rev Neurosci. 2013;24(2):125138.

  • 21

    Hamani C, Saint-Cyr JA, Fraser J, . The subthalamic nucleus in the context of movement disorders. Brain. 2004;127(pt 1):420.

  • 22

    Accolla EA, Dukart J, Helms G, . Brain tissue properties differentiate between motor and limbic basal ganglia circuits. Hum Brain Mapp. 2014;35(10):50835092.

    • Search Google Scholar
    • Export Citation
  • 23

    Lambert C, Zrinzo L, Nagy Z, . Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. Neuroimage. 2012;60(1):8394.

    • Search Google Scholar
    • Export Citation
  • 24

    Brunenberg EJ, Platel B, Hofman PA, . Magnetic resonance imaging techniques for visualization of the subthalamic nucleus. J Neurosurg. 2011;115(5):971984.

    • Search Google Scholar
    • Export Citation
  • 25

    Chandran AS, Bynevelt M, Lind CR. Magnetic resonance imaging of the subthalamic nucleus for deep brain stimulation. J Neurosurg. 2016;124(1):96105.

    • Search Google Scholar
    • Export Citation
  • 26

    Kerl HU, Gerigk L, Pechlivanis I, . The subthalamic nucleus at 3.0 Tesla: choice of optimal sequence and orientation for deep brain stimulation using a standard installation protocol. J Neurosurg. 2012;117(6):11551165.

    • Search Google Scholar
    • Export Citation
  • 27

    Dormont D, Ricciardi KG, Tandé D, . Is the subthalamic nucleus hypointense on T2-weighted images? A correlation study using MR imaging and stereotactic atlas data. AJNR Am J Neuroradiol. 2004;25(9):15161523.

    • Search Google Scholar
    • Export Citation
  • 28

    Danish SF, Jaggi JL, Moyer JT, . Conventional MRI is inadequate to delineate the relationship between the red nucleus and subthalamic nucleus in Parkinson’s disease. Stereotact Funct Neurosurg. 2006;84(1):1218.

    • Search Google Scholar
    • Export Citation
  • 29

    Rasouli J, Ramdhani R, Panov FE, . Utilization of quantitative susceptibility mapping for direct targeting of the subthalamic nucleus during deep brain stimulation surgery. Oper Neurosurg (Hagerstown). 2018;14(4):412419.

    • Search Google Scholar
    • Export Citation
  • 30

    Zonenshayn M, Rezai AR, Mogilner AY, . Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting. Neurosurgery. 2000;47(2):282294.

    • Search Google Scholar
    • Export Citation
  • 31

    Senova S, Hosomi K, Gurruchaga JM, . Three-dimensional SPACE fluid-attenuated inversion recovery at 3 T to improve subthalamic nucleus lead placement for deep brain stimulation in Parkinson’s disease: from preclinical to clinical studies. J Neurosurg. 2016;125(2):472480.

    • Search Google Scholar
    • Export Citation
  • 32

    Ishimori T, Nakano S, Mori Y, . Preoperative identification of subthalamic nucleus for deep brain stimulation using three-dimensional phase sensitive inversion recovery technique. Magn Reson Med Sci. 2007;6(4):225229.

    • Search Google Scholar
    • Export Citation
  • 33

    Kitajima M, Korogi Y, Kakeda S, . Human subthalamic nucleus: evaluation with high-resolution MR imaging at 3.0 T. Neuroradiology. 2008;50(8):675681.

    • Search Google Scholar
    • Export Citation
  • 34

    Sudhyadhom A, Haq IU, Foote KD, . A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). Neuroimage. 2009;47(suppl 2):T44T52.

    • Search Google Scholar
    • Export Citation
  • 35

    Brass SD, Chen NK, Mulkern RV, Bakshi R. Magnetic resonance imaging of iron deposition in neurological disorders. Top Magn Reson Imaging. 2006;17(1):3140.

    • Search Google Scholar
    • Export Citation
  • 36

    Xiao Y, Fonov V, Bériault S, . Multi-contrast unbiased MRI atlas of a Parkinson’s disease population. Int J CARS. 2015;10(3):329341.

    • Search Google Scholar
    • Export Citation
  • 37

    Vertinsky AT, Coenen VA, Lang DJ, . Localization of the subthalamic nucleus: optimization with susceptibility-weighted phase MR imaging. AJNR Am J Neuroradiol. 2009;30(9):17171724.

    • Search Google Scholar
    • Export Citation
  • 38

    Watanabe Y, Lee CK, Gerbi BJ. Geometrical accuracy of a 3-tesla magnetic resonance imaging unit in Gamma Knife surgery. J Neurosurg. 2006;105(suppl):190193.

    • Search Google Scholar
    • Export Citation
  • 39

    Li J, Chang S, Liu T, . Reducing the object orientation dependence of susceptibility effects in gradient echo MRI through quantitative susceptibility mapping. Magn Reson Med. 2012;68(5):15631569.

    • Search Google Scholar
    • Export Citation
  • 40

    Schweser F, Deistung A, Reichenbach JR. Foundations of MRI phase imaging and processing for Quantitative Susceptibility Mapping (QSM). Z Med Phys. 2016;26(1):634.

    • Search Google Scholar
    • Export Citation
  • 41

    Schweser F, Deistung A, Sommer K, Reichenbach JR. Toward online reconstruction of quantitative susceptibility maps: superfast dipole inversion. Magn Reson Med. 2013;69(6):15821594.

    • Search Google Scholar
    • Export Citation
  • 42

    Langkammer C, Schweser F, Shmueli K, . Quantitative susceptibility mapping: report from the 2016 reconstruction challenge. Magn Reson Med. 2018;79(3):16611673.

    • Search Google Scholar
    • Export Citation
  • 43

    Lefranc M, Derrey S, Merle P, . High-resolution 3-dimensional T2*-weighted angiography (HR 3-D SWAN): an optimized 3-T magnetic resonance imaging sequence for targeting the subthalamic nucleus. Neurosurgery. 2014;74(6):615627.

    • Search Google Scholar
    • Export Citation
  • 44

    Nagahama H, Suzuki K, Shonai T, . Comparison of magnetic resonance imaging sequences for depicting the subthalamic nucleus for deep brain stimulation. Radiol Phys Technol. 2015;8(1):3035.

    • Search Google Scholar
    • Export Citation
  • 45

    O’Gorman RL, Shmueli K, Ashkan K, . Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus. Eur Radiol. 2011;21(1):130136.

    • Search Google Scholar
    • Export Citation
  • 46

    Heo YJ, Kim SJ, Kim HS, . Three-dimensional fluid-attenuated inversion recovery sequence for visualisation of subthalamic nucleus for deep brain stimulation in Parkinson’s disease. Neuroradiology. 2015;57(9):929935.

    • Search Google Scholar
    • Export Citation
  • 47

    Sarkar SN, Sarkar PR, Papavassiliou E. Subthalamic nuclear tissue contrast in inversion recovery MRI decreases with age in medically refractory Parkinson’s disease. J Neuroimaging. 2015;25(2):303306.

    • Search Google Scholar
    • Export Citation
  • 48

    Ben-Haim S, Gologorsky Y, Monahan A, . Fiducial registration with spoiled gradient-echo magnetic resonance imaging enhances the accuracy of subthalamic nucleus targeting. Neurosurgery. 2011;69(4):870875.

    • Search Google Scholar
    • Export Citation
  • 49

    van Laar PJ, Oterdoom DL, Ter Horst GJ, . Surgical accuracy of 3-tesla versus 7-tesla magnetic resonance imaging in deep brain stimulation for Parkinson disease. World Neurosurg. 2016;93:410412.

    • Search Google Scholar
    • Export Citation
  • 50

    Ewert S, Plettig P, Li N, . Toward defining deep brain stimulation targets in MNI space: a subcortical atlas based on multimodal MRI, histology and structural connectivity. Neuroimage. 2018;170:271282.

    • Search Google Scholar
    • Export Citation
  • 51

    Mansouri A, Taslimi S, Badhiwala JH, . Deep brain stimulation for Parkinson’s disease: meta-analysis of results of randomized trials at varying lengths of follow-up. J Neurosurg. 2018;128(4):11991213.

    • Search Google Scholar
    • Export Citation
  • 52

    Odekerken VJ, van Laar T, Staal MJ, . Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol. 2013;12(1):3744.

    • Search Google Scholar
    • Export Citation
  • 53

    Vitek JL, Hashimoto T, Peoples J, . Acute stimulation in the external segment of the globus pallidus improves parkinsonian motor signs. Mov Disord. 2004;19(8):907915.

    • Search Google Scholar
    • Export Citation
  • 54

    Starr PA, Vitek JL, DeLong M, Bakay RA. Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery. 1999;44(2):303314.

    • Search Google Scholar
    • Export Citation
  • 55

    Nowacki A, Fiechter M, Fichtner J, . Using MDEFT MRI sequences to target the GPi in DBS surgery. PLoS One. 2015;10(9):e0137868.

  • 56

    Beaumont J, Saint-Jalmes H, Acosta O, . Multi T1-weighted contrast MRI with fluid and white matter suppression at 1.5 T. Magn Reson Imaging. 2019;63:217225.

    • Search Google Scholar
    • Export Citation
  • 57

    Ide S, Kakeda S, Ueda I, . Internal structures of the globus pallidus in patients with Parkinson’s disease: evaluation with quantitative susceptibility mapping (QSM). Eur Radiol. 2015;25(3):710718.

    • Search Google Scholar
    • Export Citation
  • 58

    Ide S, Kakeda S, Yoneda T, . Internal structures of the globus pallidus in patients with Parkinson’s disease: evaluation with phase difference-enhanced imaging. Magn Reson Med Sci. 2017;16(4):304310.

    • Search Google Scholar
    • Export Citation
  • 59

    Nieuwenhuys R, Voogd J, van Huijzen C. The Human Central Nervous System. 4th ed. Springer;2008.

  • 60

    Hamani C, Schwalb JM, Rezai AR, . Deep brain stimulation for chronic neuropathic pain: long-term outcome and the incidence of insertional effect. Pain. 2006;125(1-2):188196.

    • Search Google Scholar
    • Export Citation
  • 61

    Akram H, Dayal V, Mahlknecht P, . Connectivity derived thalamic segmentation in deep brain stimulation for tremor. Neuroimage Clin. 2018;18:130142.

    • Search Google Scholar
    • Export Citation
  • 62

    Grewal SS, Middlebrooks EH, Kaufmann TJ, . Fast gray matter acquisition T1 inversion recovery MRI to delineate the mammillothalamic tract for preoperative direct targeting of the anterior nucleus of the thalamus for deep brain stimulation in epilepsy. Neurosurg Focus. 2018;45(2):E6.

    • Search Google Scholar
    • Export Citation
  • 63

    Buentjen L, Kopitzki K, Schmitt FC, . Direct targeting of the thalamic anteroventral nucleus for deep brain stimulation by T1-weighted magnetic resonance imaging at 3 T. Stereotact Funct Neurosurg. 2014;92(1):2530.

    • Search Google Scholar
    • Export Citation
  • 64

    Bender B, Wagner S, Klose U. Optimized depiction of thalamic substructures with a combination of T1-MPRAGE and phase: MPRAGE. Clin Neuroradiol. 2017;27(4):511518.

    • Search Google Scholar
    • Export Citation
  • 65

    Spiegelmann R, Nissim O, Daniels D, . Stereotactic targeting of the ventrointermediate nucleus of the thalamus by direct visualization with high-field MRI. Stereotact Funct Neurosurg. 2006;84(1):1923.

    • Search Google Scholar
    • Export Citation
  • 66

    Sidiropoulos C, Mubita L, Krstevska S, Schwalb JM. Successful Vim targeting for mixed essential and parkinsonian tremor using intraoperative MRI. J Neurol Sci. 2015;358(1-2):488489.

    • Search Google Scholar
    • Export Citation
  • 67

    Alterman RL, Reiter GT, Shils J, . Targeting for thalamic deep brain stimulator implantation without computer guidance: assessment of targeting accuracy. Stereotact Funct Neurosurg. 1999;72(2-4):150153.

    • Search Google Scholar
    • Export Citation
  • 68

    Yamada K, Akazawa K, Yuen S, . MR imaging of ventral thalamic nuclei. AJNR Am J Neuroradiol. 2010;31(4):732735.

  • 69

    Jiltsova E, Möttönen T, Fahlström M, . Imaging of anterior nucleus of thalamus using 1.5T MRI for deep brain stimulation targeting in refractory epilepsy. Neuromodulation. 2016;19(8):812817.

    • Search Google Scholar
    • Export Citation
  • 70

    Möttönen T, Katisko J, Haapasalo J, . Defining the anterior nucleus of the thalamus (ANT) as a deep brain stimulation target in refractory epilepsy: delineation using 3 T MRI and intraoperative microelectrode recording. Neuroimage Clin. 2015;7:823829.

    • Search Google Scholar
    • Export Citation
  • 71

    Bonneville F, Welter ML, Elie C, . Parkinson disease, brain volumes, and subthalamic nucleus stimulation. Neurology. 2005;64(9):15981604.

    • Search Google Scholar
    • Export Citation
  • 72

    Lee SH, Kim SS, Tae WS, . Regional volume analysis of the Parkinson disease brain in early disease stage: gray matter, white matter, striatum, and thalamus. AJNR Am J Neuroradiol. 2011;32(4):682687.

    • Search Google Scholar
    • Export Citation
  • 73

    O’Gorman RL, Jarosz JM, Samuel M, . CT/MR image fusion in the postoperative assessment of electrodes implanted for deep brain stimulation. Stereotact Funct Neurosurg. 2009;87(4):205210.

    • Search Google Scholar
    • Export Citation
  • 74

    Geevarghese R, O’Gorman Tuura R, Lumsden DE, . Registration accuracy of CT/MRI fusion for localisation of deep brain stimulation electrode position: an imaging study and systematic review. Stereotact Funct Neurosurg. 2016;94(3):159163.

    • Search Google Scholar
    • Export Citation
  • 75

    Holl EM, Petersen EA, Foltynie T, . Improving targeting in image-guided frame-based deep brain stimulation. Neurosurgery. 2010;67(2 Suppl Operative):437447.

    • Search Google Scholar
    • Export Citation
  • 76

    Park SC, Lee JK, Kim SM, . Systematic stereotactic error reduction using a calibration technique in single-brain-pass and multitrack deep brain stimulations. Oper Neurosurg (Hagerstown). 2018;15(1):7280.

    • Search Google Scholar
    • Export Citation
  • 77

    Kraff O, Quick HH. 7T: Physics, safety, and potential clinical applications. J Magn Reson Imaging. 2017;46(6):15731589.

  • 78

    Springer E, Dymerska B, Cardoso PL, . Comparison of routine brain imaging at 3 T and 7 T. Invest Radiol. 2016;51(8):469482.

  • 79

    Forstmann BU, de Hollander G, van Maanen L, . Towards a mechanistic understanding of the human subcortex. Nat Rev Neurosci. 2016;18(1):5765.

    • Search Google Scholar
    • Export Citation
  • 80

    Abosch A, Yacoub E, Ugurbil K, Harel N. An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 tesla. Neurosurgery. 2010;67(6):17451756.

    • Search Google Scholar
    • Export Citation
  • 81

    Dammann P, Kraff O, Wrede KH, . Evaluation of hardware-related geometrical distortion in structural MRI at 7 Tesla for image-guided applications in neurosurgery. Acad Radiol. 2011;18(7):910916.

    • Search Google Scholar
    • Export Citation
  • 82

    Hoff MN, McKinney A IV, Shellock FG, . Safety considerations of 7-T MRI in clinical practice. Radiology. 2019;292(3):509518.

  • 83

    Yarach U, Luengviriya C, Stucht D, . Correction of B 0-induced geometric distortion variations in prospective motion correction for 7T MRI. MAGMA. 2016;29(3):319332.

    • Search Google Scholar
    • Export Citation
  • 84

    See AAQ, King NKK. Improving surgical outcome using diffusion tensor imaging techniques in deep brain stimulation. Front Surg. 2017;4:54.

    • Search Google Scholar
    • Export Citation
  • 85

    Akram H, Sotiropoulos SN, Jbabdi S, . Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson’s disease. Neuroimage. 2017;158:332345.

    • Search Google Scholar
    • Export Citation
  • 86

    Horn A, Reich M, Vorwerk J, . Connectivity predicts deep brain stimulation outcome in Parkinson disease. Ann Neurol. 2017;82(1):6778.

    • Search Google Scholar
    • Export Citation
  • 87

    Coenen VA, Allert N, Paus S, . Modulation of the cerebello-thalamo-cortical network in thalamic deep brain stimulation for tremor: a diffusion tensor imaging study. Neurosurgery. 2014;75(6):657670.

    • Search Google Scholar
    • Export Citation
  • 88

    Coenen VA, Sajonz B, Reisert M, . Tractography-assisted deep brain stimulation of the superolateral branch of the medial forebrain bundle (slMFB DBS) in major depression. Neuroimage Clin. 2018;20:580593.

    • Search Google Scholar
    • Export Citation
  • 89

    Coenen VA, Allert N, Mädler B. A role of diffusion tensor imaging fiber tracking in deep brain stimulation surgery: DBS of the dentato-rubro-thalamic tract (drt) for the treatment of therapy-refractory tremor. Acta Neurochir (Wien). 2011;153(8):15791585.

    • Search Google Scholar
    • Export Citation
  • 90

    Sajonz BE, Amtage F, Reinacher PC, . Deep Brain Stimulation for Tremor Tractographic Versus Traditional (DISTINCT): study protocol of a randomized controlled feasibility trial. JMIR Res Protoc. 2016;5(4):e244.

    • Search Google Scholar
    • Export Citation
  • 91

    Chazen JL, Sarva H, Stieg PE, . Clinical improvement associated with targeted interruption of the cerebellothalamic tract following MR-guided focused ultrasound for essential tremor. J Neurosurg. 2018;129(2):315323.

    • Search Google Scholar
    • Export Citation
  • 92

    Plantinga BR, Temel Y, Duchin Y, . Individualized parcellation of the subthalamic nucleus in patients with Parkinson’s disease with 7T MRI. Neuroimage. 2018;168:403411.

    • Search Google Scholar
    • Export Citation
  • 93

    Johansen-Berg H, Behrens TE, Sillery E, . Functional-anatomical validation and individual variation of diffusion tractography-based segmentation of the human thalamus. Cereb Cortex. 2005;15(1):3139.

    • Search Google Scholar
    • Export Citation
  • 94

    Zrinzo L, Zrinzo LV, Tisch S, . Stereotactic localization of the human pedunculopontine nucleus: atlas-based coordinates and validation of a magnetic resonance imaging protocol for direct localization. Brain. 2008;131(pt 6):15881598.

    • Search Google Scholar
    • Export Citation
  • 95

    Elolf E, Bockermann V, Gringel T, . Improved visibility of the subthalamic nucleus on high-resolution stereotactic MR imaging by added susceptibility (T2*) contrast using multiple gradient echoes. AJNR Am J Neuroradiol. 2007;28(6):10931094.

    • Search Google Scholar
    • Export Citation
  • 96

    Maruyama S, Fukunaga M, Fautz HP, . Comparison of 3T and 7T MRI for the visualization of globus pallidus sub-segments. Sci Rep. 2019;9(1):18357.

    • Search Google Scholar
    • Export Citation
  • 97

    Li J, Li Y, Gutierrez L, . Imaging the centromedian thalamic nucleus using quantitative susceptibility mapping. Front Hum Neurosci. 2020;13:447.

    • Search Google Scholar
    • Export Citation
  • 98

    Mai J, Majtanik M, Paxinos G. Atlas of the Human Brain. 4th ed. Elsevier Academic Press;2015.

  • 99

    Edlow BL, Mareyam A, Horn A, . 7 Tesla MRI of the ex vivo human brain at 100 micron resolution. Sci Data. 2019;6(1):244.

Metrics

All Time Past Year Past 30 Days
Abstract Views 300 300 300
Full Text Views 129 129 129
PDF Downloads 83 83 83
EPUB Downloads 0 0 0