Functional DTI tractography in brainstem cavernoma surgery

View More View Less
  • Department of Neurosurgery, Charité–Universitätsmedizin Berlin, Germany
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

OBJECTIVE

Surgical resection of brainstem cavernomas is associated with high postoperative morbidity due to the density of local vulnerable structures. Classical mapping of pathways by diffusion tensor imaging (DTI) has proven to be unspecific and confusing in many cases. In the current study, the authors aimed to establish a more reliable, specific, and objective method for somatotopic visualization of the descending motor pathways with navigated transcranial magnetic stimulation (nTMS)–based DTI fiber tracking.

METHODS

Twenty-one patients with brainstem cavernomas were examined with nTMS prior to surgery. The resting motor threshold (RMT) and cortical representation areas of hand, leg, and facial function were determined on both hemispheres. Motor evoked potential (MEP)–positive stimulation spots were then set as seed points for tractography. Somatotopic fiber tracking was performed at a fractional anisotropy (FA) value of 75% of the individual FA threshold.

RESULTS

Mapping of the motor cortex and tract reconstruction for hand, leg, and facial function was successful in all patients. The somatotopy of corticospinal and corticonuclear tracts was also clearly depicted on the brainstem level. Higher preoperative RMT values were associated with a postoperative motor deficit (p < 0.05) and correlated with a lower FA threshold (p < 0.05), revealing structural impairment of the corticospinal tract (CST) prior to surgery. In patients with a new deficit, the distance between the lesion and CST was below 1 mm.

CONCLUSIONS

nTMS-based fiber tracking enables objective somatotopic tract visualization on the brainstem level and provides a valuable instrument for preoperative planning, intraoperative orientation, and individual risk stratification. nTMS may thus increase the safety of surgical resection of brainstem cavernomas.

ABBREVIATIONS BSCM = brainstem cavernous malformation; CBT = corticobulbar tract; CST = corticospinal tract; DTI = diffusion tensor imaging; DTT = diffusion tensor tractography; FA = fractional anisotropy; FAT = FA threshold; FDI = first digital interosseus muscle; MEP = motor evoked potential; MRC = Medical Research Council; mRS = modified Rankin Scale; nTMS = navigated transcranial magnetic stimulation; RMT = resting motor threshold; ROI = region of interest.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Peter Vajkoczy: Charité–Universitätsmedizin Berlin, Germany. peter.vajkoczy@charite.de.

INCLUDE WHEN CITING Published online December 25, 2020; DOI: 10.3171/2020.7.JNS20403.

Disclosures T. Picht has served as a speaker for Nexstim Oy but is not a contracted consultant.

  • 1

    Gross BA, Lin N, Du R, Day AL. The natural history of intracranial cavernous malformations. Neurosurg Focus. 2011;30(6):E24.

  • 2

    Kim PY, Park YG, Choi JU, An analysis of the natural history of cavernous malformations. Surg Neurol. 1997;48(1):918.

  • 3

    Robinson JR Jr, Awad IA, Little JR. Natural history of the cavernous angioma. J Neurosurg. 1991;75(5):709714.

  • 4

    Dukatz T, Sarnthein J, Sitter H, Quality of life after brainstem cavernoma surgery in 71 patients. Neurosurgery. 2011;69(3):689695.

  • 5

    Hauck EF, Barnett SL, White JA, Samson D. Symptomatic brainstem cavernomas. Neurosurgery. 2009;64(1):6171.

  • 6

    Gross BABH, Batjer HH, Awad IA, Bendok BR. Brainstem cavernous malformations. Neurosurgery. 2009;64(5):E805E818.

  • 7

    Gross BA, Batjer HH, Awad IA, Brainstem cavernous malformations: 1390 surgical cases from the literature. World Neurosurg. 2013;80(1-2):8993.

    • Search Google Scholar
    • Export Citation
  • 8

    Cao Z, Lv J, Wei X, Quan W. Appliance of preoperative diffusion tensor imaging and fiber tractography in patients with brainstem lesions. Neurol India. 2010;58(6):886890.

    • Search Google Scholar
    • Export Citation
  • 9

    Berman J. Diffusion MR tractography as a tool for surgical planning. Magn Reson Imaging Clin N Am. 2009;17(2):205214.

  • 10

    Sarubbo S, De Benedictis A, Merler S, Towards a functional atlas of human white matter. Hum Brain Mapp. 2015;36(8):31173136.

  • 11

    Basser MJ, Mattiello J, LeBihan D. MR diffusion tensor spectroscopy and imaging. Biophys J. 1994;66(1):259267.

  • 12

    Sundgren PC, Dong Q, Gómez-Hassan D, Diffusion tensor imaging of the brain: review of clinical applications. Neuroradiology. 2004;46(5):339350.

    • Search Google Scholar
    • Export Citation
  • 13

    Basser PJ, Pajevic S, Pierpaoli C, In vivo fiber tractography using DT-MRI data. Magn Reson Med. 2000;44(4):625632.

  • 14

    Chen X, Weigel D, Ganslandt O, Diffusion tensor-based fiber tracking and intraoperative neuronavigation for the resection of a brainstem cavernous angioma. Surg Neurol. 2007;68(3):285291.

    • Search Google Scholar
    • Export Citation
  • 15

    Faraji AH, Abhinav K, Jarbo K, Longitudinal evaluation of corticospinal tract in patients with resected brainstem cavernous malformations using high-definition fiber tractography and diffusion connectometry analysis: preliminary experience. J Neurosurg. 2015;123(5):11331144.

    • Search Google Scholar
    • Export Citation
  • 16

    Flores BC, Whittemore AR, Samson DS, Barnett SL. The utility of preoperative diffusion tensor imaging in the surgical management of brainstem cavernous malformations. J Neurosurg. 2015;122(3):653662.

    • Search Google Scholar
    • Export Citation
  • 17

    Li D, Jiao YM, Wang L, Surgical outcome of motor deficits and neurological status in brainstem cavernous malformations based on preoperative diffusion tensor imaging: a prospective randomized clinical trial. J Neurosurg. 2018;130(1):286301.

    • Search Google Scholar
    • Export Citation
  • 18

    Ulrich NH, Kockro RA, Bellut D, Brainstem cavernoma surgery with the support of pre- and postoperative diffusion tensor imaging: initial experiences and clinical course of 23 patients. Neurosurg Rev. 2014;37(3):481492.

    • Search Google Scholar
    • Export Citation
  • 19

    Januszewski J, Albert L, Black K, Dehdashti AR. The usefulness of diffusion tensor imaging and tractography in surgery of brainstem cavernous malformations. World Neurosurg. 2016;93:377388.

    • Search Google Scholar
    • Export Citation
  • 20

    Ruohonen J, Karhu J. Navigated transcranial magnetic stimulation. Neurophysiol Clin. 2010;40(1):717.

  • 21

    Picht T, Mularski S, Kuehn B, Navigated transcranial magnetic stimulation for preoperative functional diagnostics in brain tumor surgery. Neurosurgery. 2009;65(6)(suppl):9399.

    • Search Google Scholar
    • Export Citation
  • 22

    Lefaucheur JP, Picht T. The value of preoperative functional cortical mapping using navigated TMS. Neurophysiol Clin. 2016;46(2):125133.

    • Search Google Scholar
    • Export Citation
  • 23

    Picht T, Schmidt S, Brandt S, Preoperative functional mapping for rolandic brain tumor surgery: comparison of navigated transcranial magnetic stimulation to direct cortical stimulation. Neurosurgery. 2011;69(3):581588.

    • Search Google Scholar
    • Export Citation
  • 24

    Picht T. Current and potential utility of transcranial magnetic stimulation in the diagnostics before brain tumor surgery. CNS Oncol. 2014;3(4):299310.

    • Search Google Scholar
    • Export Citation
  • 25

    Krieg SM, Shiban E, Buchmann N, Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. J Neurosurg. 2012;116(5):9941001.

    • Search Google Scholar
    • Export Citation
  • 26

    Frey D, Strack V, Wiener E, A new approach for corticospinal tract reconstruction based on navigated transcranial stimulation and standardized fractional anisotropy values. Neuroimage. 2012;62(3):16001609.

    • Search Google Scholar
    • Export Citation
  • 27

    Jussen D, Zdunczyk A, Schmidt S, Motor plasticity after extra-intracranial bypass surgery in occlusive cerebrovascular disease. Neurology. 2016;87(1):2735.

    • Search Google Scholar
    • Export Citation
  • 28

    Awiszus F, Feistner H, Urbach D, Bostock H. Characterisation of paired-pulse transcranial magnetic stimulation conditions yielding intracortical inhibition or I-wave facilitation using a threshold-hunting paradigm. Exp Brain Res. 1999;129(2):317324.

    • Search Google Scholar
    • Export Citation
  • 29

    Nimsky C, Ganslandt O, Merhof D, Intraoperative visualization of the pyramidal tract by diffusion-tensor-imaging-based fiber tracking. Neuroimage. 2006;30(4):12191229.

    • Search Google Scholar
    • Export Citation
  • 30

    Rosenstock T, Giampiccolo D, Schneider H, Specific DTI seeding and diffusivity-analysis improve the quality and prognostic value of TMS-based deterministic DTI of the pyramidal tract. Neuroimage Clin. 2017;16:276285.

    • Search Google Scholar
    • Export Citation
  • 31

    Kovanlikaya I, Firat Z, Kovanlikaya A, Assessment of the corticospinal tract alterations before and after resection of brainstem lesions using diffusion tensor imaging (DTI) and tractography at 3T. Eur J Radiol. 2011;77(3):383391.

    • Search Google Scholar
    • Export Citation
  • 32

    Rosenstock T, Grittner U, Acker G, Risk stratification in motor area-related glioma surgery based on navigated transcranial magnetic stimulation data. J Neurosurg. 2017;126(4):12271237.

    • Search Google Scholar
    • Export Citation
  • 33

    Cantu C, Murillo-Bonilla L, Arauz A, Predictive factors for intracerebral hemorrhage in patients with cavernous angiomas. Neurol Res. 2005;27(3):314318.

    • Search Google Scholar
    • Export Citation
  • 34

    Pandey P, Westbroek EM, Gooderham PA, Steinberg GK. Cavernous malformation of brainstem, thalamus, and basal ganglia: a series of 176 patients. Neurosurgery. 2013;72(4):573589.

    • Search Google Scholar
    • Export Citation
  • 35

    Garcia RM, Ivan ME, Lawton MT. Brainstem cavernous malformations: surgical results in 104 patients and a proposed grading system to predict neurological outcomes. Neurosurgery. 2015;76(3):265278.

    • Search Google Scholar
    • Export Citation
  • 36

    Walcott BP, Choudhri O, Lawton MT. Brainstem cavernous malformations: Natural history versus surgical management. J Clin Neurosci. 2016;32:164165.

    • Search Google Scholar
    • Export Citation
  • 37

    Mori S, van Zijl PC. Fiber tracking: principles and strategies—a technical review. NMR Biomed. 2002;15(7-8):468480.

  • 38

    Leclercq D, Delmaire C, de Champfleur NM, Diffusion tractography: methods, validation and applications in patients with neurosurgical lesions. Neurosurg Clin N Am. 2011;22(2):253268, ix.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 641 641 641
Full Text Views 102 102 102
PDF Downloads 43 43 43
EPUB Downloads 0 0 0