Efficacy of decitabine in malignant meningioma cells: relation to promoter demethylation of distinct tumor suppressor and oncogenes and independence from TERT

View More View Less
  • 1 Department of Neurosurgery,
  • 2 Institute of Neuropathology, and
  • 3 Department of Neurology, University Hospital Münster, North Rhine-Westphalia, Germany
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

OBJECTIVE

Chemotherapeutic options for meningiomas refractory to surgery or irradiation are largely unknown. Human telomerase reverse transcriptase (hTERT) promoter methylation with subsequent TERT expression and telomerase activity, key features in oncogenesis, are found in most high-grade meningiomas. Therefore, the authors investigated the impact of the demethylating agent decitabine (5-aza-2′-deoxycytidine) on survival and DNA methylation in meningioma cells.

METHODS

hTERT promoter methylation, telomerase activity, TERT expression, and cell viability and proliferation were investigated prior to and after incubation with decitabine in two benign (HBL-52 and Ben-Men 1) and one malignant (IOMM-Lee) meningioma cell line. The global effects of decitabine on DNA methylation were additionally explored with DNA methylation profiling.

RESULTS

High levels of TERT expression, telomerase activity, and hTERT promoter methylation were found in IOMM-Lee and Ben-Men 1 but not in HBL-52 cells. Decitabine induced a dose-dependent significant decrease of proliferation and viability after incubation with doses from 1 to 10 μM in IOMM-Lee but not in HBL-52 or Ben-Men 1 cells. However, effects in IOMM-Lee cells were not related to TERT expression, telomerase activity, or hTERT promoter methylation. Genome-wide methylation analyses revealed distinct demethylation of 14 DNA regions after drug administration in the decitabine-sensitive IOMM-Lee but not in the decitabine-resistant HBL-52 cells. Differentially methylated regions covered promoter regions of 11 genes, including several oncogenes and tumor suppressor genes that to the authors' knowledge have not yet been described in meningiomas.

CONCLUSIONS

Decitabine decreases proliferation and viability in high-grade but not in benign meningioma cell lines. The effects of decitabine are TERT independent but related to DNA methylation changes of promoters of distinct tumor suppressor genes and oncogenes.

ABBREVIATIONS ALT = alternative lengthening of the telomeres; decitabine = 5-aza-2′-deoxycytidine; DMR = differentially methylated region; hTERT = human TERT; MS-PCR = methylation-specific PCR; MTT = 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; PCR = polymerase chain reaction; qRT-PCR = quantitative real-time PCR; TERT = telomerase reverse transcriptase.

Supplementary Materials

    • Supplemental Figures (PDF 6.67 MB)

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Benjamin Brokinkel: University Hospital Münster, Germany. benjamin.brokinkel@ukmuenster.de.

INCLUDE WHEN CITING Published online December 11, 2020; DOI: 10.3171/2020.7.JNS193097.

Disclosures The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

V.S. and B.B. contributed equally to this work.

  • 1

    Perry A, Louis DN, von Deimling A, . Meningiomas. In : Louis DN, Ohgaki H, Wiestler OD, , eds. WHO Classification of Tumors of the Central Nervous System. International Agency on Cancer Research; 2016:232245.

    • Search Google Scholar
    • Export Citation
  • 2

    Castelo-Branco P, Choufani S, Mack S, . Methylation of the TERT promoter and risk stratification of childhood brain tumours: an integrative genomic and molecular study. Lancet Oncol. 2013; 14 (6):534542.

    • Search Google Scholar
    • Export Citation
  • 3

    Cabuy E, de Ridder, L. Telomerase activity and expression of telomerase reverse transcriptase correlated with cell proliferation in meningiomas and malignant brain tumors in vivo. Virchows Arch. 2001; 439 (2):176184.

    • Search Google Scholar
    • Export Citation
  • 4

    Fürtjes G, Köchling M, Peetz-Dienhart S, . hTERT promoter methylation in meningiomas and central nervous hemangiopericytomas. J Neurooncol. 2016; 130 (1):7987.

    • Search Google Scholar
    • Export Citation
  • 5

    Kalala JP, Maes L, Vandenbroecke C, de Ridder, L. The hTERT protein as a marker for malignancy in meningiomas. Oncol Rep. 2005; 13 (2):273277.

    • Search Google Scholar
    • Export Citation
  • 6

    Langford LA, Piatyszek MA, Xu R, . Telomerase activity in ordinary meningiomas predicts poor outcome. Hum Pathol. 1997; 28 (4):416420.

    • Search Google Scholar
    • Export Citation
  • 7

    Maes L, Kalala JP, Cornelissen R, de Ridder L. Telomerase activity and hTERT protein expression in meningiomas: an analysis in vivo versus in vitro. Anticancer Res. 2006;26(3B): 22952300.

    • Search Google Scholar
    • Export Citation
  • 8

    Koelsche C, Sahm F, Capper D, . Distribution of TERT promoter mutations in pediatric and adult tumors of the nervous system. Acta Neuropathol. 2013; 126 (6):907915.

    • Search Google Scholar
    • Export Citation
  • 9

    Sahm F, Schrimpf D, Olar A, . TERT promoter mutations and risk of recurrence in meningioma. J Natl Cancer Inst. 2015;108(5):djv377.

  • 10

    Lu VM, Goyal A, Lee A, . The prognostic significance of TERT promoter mutations in meningioma: a systematic review and meta-analysis. J Neurooncol. 2019; 142 (1):110.

    • Search Google Scholar
    • Export Citation
  • 11

    Stögbauer L, Stummer W, Senner V, Brokinkel, B. Telomerase activity, TERT expression, hTERT promoter alterations, and alternative lengthening of the telomeres (ALT) in meningiomas—a systematic review. Neurosurg Rev. 2020; 43 (3):903910.

    • Search Google Scholar
    • Export Citation
  • 12

    Peyre M, Gauchotte G, Giry M, . De novo and secondary anaplastic meningiomas: a study of clinical and histomolecular prognostic factors. Neuro Oncol. 2018;20(8): 11131121.

    • Search Google Scholar
    • Export Citation
  • 13

    Spiegl-Kreinecker S, Lötsch D, Neumayer K, . TERT promoter mutations are associated with poor prognosis and cell immortalization in meningioma. Neuro Oncol. 2018; 20(12):15841593.

    • Search Google Scholar
    • Export Citation
  • 14

    Leão R, Apolónio JD, Lee D, . Mechanisms of human telomerase reverse transcriptase (hTERT) regulation: clinical impacts in cancer. J Biomed Sci. 2018;25(1):22.

    • Search Google Scholar
    • Export Citation
  • 15

    Bujko M, Kober P, Rusetska N, . Aberrant DNA methylation of alternative promoter of DLC1 isoform 1 in meningiomas. J Neurooncol. 2016; 130 (3):473484.

    • Search Google Scholar
    • Export Citation
  • 16

    Gao F, Shi L, Russin J, . DNA methylation in the malignant transformation of meningiomas. PLoS One. 2013;8(1): e54114.

  • 17

    Lombardi IAS, Faria MHG, Rabenhorst SHB, . Hyper-methylation of BRCA1 gene in meningioma in elderly males. Anticancer Res. 2018; 38 (5):28192822.

    • Search Google Scholar
    • Export Citation
  • 18

    Majchrzak-Celińska A, Paluszczak J, Szalata M, . DNA methylation analysis of benign and atypical meningiomas: correlation between RUNX3 methylation and WHO grade. J Cancer Res Clin Oncol. 2015; 141 (9):15931601.

    • Search Google Scholar
    • Export Citation
  • 19

    Sahm F, Schrimpf D, Stichel D, . DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol. 2017;18(5): 682694.

    • Search Google Scholar
    • Export Citation
  • 20

    He PF, Zhou JD, Yao DM, . Efficacy and safety of decitabine in treatment of elderly patients with acute myeloid leukemia: a systematic review and meta-analysis. Oncotarget. 2017; 8 (25):4149841507.

    • Search Google Scholar
    • Export Citation
  • 21

    Grandjenette C, Schnekenburger M, Karius T, . 5-aza-2′-deoxycytidine-mediated c-myc Down-regulation triggers telomere-dependent senescence by regulating human telomerase reverse transcriptase in chronic myeloid leukemia. Neoplasia. 2014; 16 (6):511528.

    • Search Google Scholar
    • Export Citation
  • 22

    Hamm CA, Xie H, Costa FF, . Global demethylation of rat chondrosarcoma cells after treatment with 5-aza-2′-deoxycytidine results in increased tumorigenicity. PLoS One. 2009;4(12):e8340.

    • Search Google Scholar
    • Export Citation
  • 23

    Püttmann S, Senner V, Braune S, . Establishment of a benign meningioma cell line by hTERT-mediated immortalization. Lab Invest. 2005; 85 (9):11631171.

    • Search Google Scholar
    • Export Citation
  • 24

    Liu Y, Pang JC, Dong S, . Aberrant CpG island hyper-methylation profile is associated with atypical and anaplastic meningiomas. Hum Pathol. 2005; 36 (4):416425.

    • Search Google Scholar
    • Export Citation
  • 25

    Fürtjes G, Heß K, Wagner A, . Retention of ATRX and DAXX expression in meningiomas. Letter. Neurosurgery. 2017;81(2):E22E23.

  • 26

    Aryee MJ, Jaffe AE, Corrada-Bravo H, . Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics. 2014; 30 (10):13631369.

    • Search Google Scholar
    • Export Citation
  • 27

    Peters TJ, Buckley MJ, Statham AL, . De novo identification of differentially methylated regions in the human genome. Epigenetics Chromatin. 2015;8:6.

    • Search Google Scholar
    • Export Citation
  • 28

    Andrae N, Kirches E, Hartig R, . Sunitinib targets PDGF-receptor and Flt3 and reduces survival and migration of human meningioma cells. Eur J Cancer. 2012;48(12): 18311841.

    • Search Google Scholar
    • Export Citation
  • 29

    Hagemann S, Heil O, Lyko F, Brueckner, B. Azacytidine and decitabine induce gene-specific and non-random DNA demethylation in human cancer cell lines. PLoS One. 2011;6(3): e17388.

    • Search Google Scholar
    • Export Citation
  • 30

    Bhandari A, Shen Y, Sindan N, . MAL2 promotes proliferation, migration, and invasion through regulating epithelialmesenchymal transition in breast cancer cell lines. Biochem Biophys Res Commun. 2018; 504 (2):434439.

    • Search Google Scholar
    • Export Citation
  • 31

    Cheng Y, Hou T, Ping J, . LMO3 promotes hepatocellular carcinoma invasion, metastasis and anoikis inhibition by directly interacting with LATS1 and suppressing Hippo signaling. J Exp Clin Cancer Res. 2018;37(1):228.

    • Search Google Scholar
    • Export Citation
  • 32

    Dai W, Liu H, Xu X, . Genetic variants in ELOVL2 and HSD17B12 predict melanoma-specific survival. Int J Cancer. 2019; 145 (10):26192628.

    • Search Google Scholar
    • Export Citation
  • 33

    Eguchi D, Ohuchida K, Kozono S, . MAL2 expression predicts distant metastasis and short survival in pancreatic cancer. Surgery. 2013; 154 (3):573582.

    • Search Google Scholar
    • Export Citation
  • 34

    Kajiura K, Masuda K, Naruto T, . Frequent silencing of the candidate tumor suppressor TRIM58 by promoter methylation in early-stage lung adenocarcinoma. Oncotarget. 2017; 8 (2):28902905.

    • Search Google Scholar
    • Export Citation
  • 35

    Li J, Li Y, Liu H, . The four-transmembrane protein MAL2 and tumor protein D52 (TPD52) are highly expressed in colorectal cancer and correlated with poor prognosis. PLoS One. 2017;12(5):e0178515.

    • Search Google Scholar
    • Export Citation
  • 36

    Liu M, Zhang X, Cai J, . Downregulation of TRIM58 expression is associated with a poor patient outcome and enhances colorectal cancer cell invasion. Oncol Rep. 2018; 40(3):12511260.

    • Search Google Scholar
    • Export Citation
  • 37

    Molina-Pinelo S, Salinas A, Moreno-Mata N, . Impact of DLK1-DIO3 imprinted cluster hypomethylation in smoker patients with lung cancer. Oncotarget. 2016; 9 (4):43954410.

    • Search Google Scholar
    • Export Citation
  • 38

    Qiu YS, Jiang NN, Zhou Y, . LMO3 promotes gastric cancer cell invasion and proliferation through Akt-mTOR and Akt-GSK3β signaling. Int J Mol Med. 2018;41(5):27552763.

    • Search Google Scholar
    • Export Citation
  • 39

    Wong N, Gu Y, Kapoor A, . Upregulation of FAM84B during prostate cancer progression. Oncotarget. 2017;8(12): 1921819235.

  • 40

    Zhang H, Zheng J, Shen H, . Curcumin suppresses in vitro proliferation and invasion of human prostate cancer stem cells by modulating DLK1-DIO3 imprinted gene cluster microRNAs. Genet Test Mol Biomarkers. 2018; 22 (1):4350.

    • Search Google Scholar
    • Export Citation
  • 41

    Nakamura M, Nishikawa J, Saito M, . Decitabine inhibits tumor cell proliferation and up-regulates e-cadherin expression in Epstein-Barr virus-associated gastric cancer. J Med Virol. 2017; 89 (3):508517.

    • Search Google Scholar
    • Export Citation
  • 42

    Thibault A, Figg WD, Bergan RC, . A phase II study of 5-aza-2′deoxycytidine (decitabine) in hormone independent metastatic (D2) prostate cancer. Tumori. 1998; 84 (1):8789.

    • Search Google Scholar
    • Export Citation
  • 43

    Xia C, Leon-Ferre R, Laux D, . Treatment of resistant metastatic melanoma using sequential epigenetic therapy (decitabine and panobinostat) combined with chemotherapy (temozolomide). Cancer Chemother Pharmacol. 2014;74(4): 691697.

    • Search Google Scholar
    • Export Citation
  • 44

    Kitchen MO, Bryan RT, Haworth KE, . Methylation of HOXA9 and ISL1 predicts patient outcome in high-grade non-invasive bladder cancer. PLoS One. 2015;10(9):e0137003.

    • Search Google Scholar
    • Export Citation
  • 45

    Serna E, Morales JM, Mata M, . Gene expression profiles of metabolic aggressiveness and tumor recurrence in benign meningioma. PLoS One. 2013;8(6):e67291.

    • Search Google Scholar
    • Export Citation
  • 46

    Pettigrew KA, Armstrong RN, Colyer HA, . Differential TERT promoter methylation and response to 5-aza-2ʹ- deoxycytidine in acute myeloid leukemia cell lines: TERT expression, telomerase activity, telomere length, and cell death. Genes Chromosomes Cancer. 2012; 51 (8):768780.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 441 441 100
Full Text Views 69 69 26
PDF Downloads 47 47 13
EPUB Downloads 0 0 0