Selection of deep brain stimulation contacts using volume of tissue activated software following subthalamic nucleus stimulation

View More View Less
  • 1 Departments of Neurology and
  • 2 Neurosurgery, Amiens University Hospital Center, Amiens, France
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

OBJECTIVE

High-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is effective in the treatment of motor symptoms of Parkinson’s disease. Using a patient-specific lead and volume of tissue activated (VTA) software, it is possible to visualize contact positions in the context of the patient’s own anatomy. In this study, the authors’ aim was to demonstrate that VTA software can be used in clinical practice to help determine the clinical effectiveness of stimulation in patients with Parkinson’s disease undergoing DBS of the STN.

METHODS

Brain images of 26 patients undergoing STN DBS were analyzed using VTA software. Preoperative clinical and neuropsychological data were collected. Contacts were chosen by two experts in DBS blinded to the clinical data. A therapeutic window of amplitude was determined. These results were compared with the parameter settings for each patient. Data were obtained at 3 months and 1 year postsurgery.

RESULTS

In 90.4% (95% CI 82%–98%) of the patients, the contacts identified by the VTA software were concordant with the clinically effective contacts or with an effective contact in contact-by-contact testing. The therapeutic window of amplitude selected virtually included 81.3% of the clinical amplitudes.

CONCLUSIONS

VTA software appears to present significant concordance with clinical data for selecting contacts and stimulation parameters that could help in postoperative follow-up and programming.

ABBREVIATIONS AC = anterior commissure; AE = adverse event; DBS = deep brain stimulation; DTI = diffusion tensor imaging; FGATIR = fast gray matter acquisition T1 inversion recovery; ICD = impulse control disorder; MMSE = Mini–Mental State Examination; PC = posterior commissure; PD = Parkinson’s disease; STN = subthalamic nucleus; SWAN = susceptibility-weighted angiography; UPDRS III = Unified Parkinson’s Disease Rating Scale part III; VTA = volume of tissue activated.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Mathilde Devaluez: Amiens University Hospital Center, Amiens, France. mathilde.devaluez@gmail.com.

INCLUDE WHEN CITING Published online October 23, 2020; DOI: 10.3171/2020.6.JNS192157.

Disclosures Dr. Lefranc: consultant for Zimmer Biomet.

  • 1

    Benabid AL, Chabardes S, Mitrofanis J, Pollak P. Deep brain stimulation of the subthalamic nucleus for the treatment of Parkinson’s disease. Lancet Neurol. 2009;8(1):6781.

    • Search Google Scholar
    • Export Citation
  • 2

    Fox SH, Katzenschlager R, Lim S-Y, International Parkinson and Movement Disorder Society evidence-based medicine review: update on treatments for the motor symptoms of Parkinson’s disease. Mov Disord. 2018;33(8):12481266.

    • Search Google Scholar
    • Export Citation
  • 3

    Kleiner-Fisman G, Herzog J, Fisman DN, Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord. 2006;21(suppl 14):S290S304.

    • Search Google Scholar
    • Export Citation
  • 4

    Kleiner-Fisman G, Fisman DN, Sime E, Long-term follow up of bilateral deep brain stimulation of the subthalamic nucleus in patients with advanced Parkinson disease. J Neurosurg. 2003;99(3):489495.

    • Search Google Scholar
    • Export Citation
  • 5

    Lambert C, Zrinzo L, Nagy Z, Confirmation of functional zones within the human subthalamic nucleus: patterns of connectivity and sub-parcellation using diffusion weighted imaging. Neuroimage. 2012;60(1):8394.

    • Search Google Scholar
    • Export Citation
  • 6

    Kurtis MM, Rajah T, Delgado LF, Dafsari HS. The effect of deep brain stimulation on the non-motor symptoms of Parkinson’s disease: a critical review of the current evidence. NPJ Parkinsons Dis. 2017;3:16024.

    • Search Google Scholar
    • Export Citation
  • 7

    Dafsari HS, Silverdale M, Strack M, Nonmotor symptoms evolution during 24 months of bilateral subthalamic stimulation in Parkinson’s disease. Mov Disord. 2018;33(3):421430.

    • Search Google Scholar
    • Export Citation
  • 8

    Welter ML, Houeto JL, Tezenas du Montcel S, Clinical predictive factors of subthalamic stimulation in Parkinson’s disease. Brain. 2002;125(Pt 3):575583.

    • Search Google Scholar
    • Export Citation
  • 9

    Parsons TD, Rogers SA, Braaten AJ, Cognitive sequelae of subthalamic nucleus deep brain stimulation in Parkinson’s disease: a meta-analysis. Lancet Neurol. 2006;5(7):578588.

    • Search Google Scholar
    • Export Citation
  • 10

    Bonneville F, Welter ML, Elie C, Parkinson disease, brain volumes, and subthalamic nucleus stimulation. Neurology. 2005;64(9):15981604.

    • Search Google Scholar
    • Export Citation
  • 11

    Moro E, Poon Y-YW, Lozano AM, Subthalamic nucleus stimulation: improvements in outcome with reprogramming. Arch Neurol. 2006;63(9):12661272.

    • Search Google Scholar
    • Export Citation
  • 12

    Plantinga BR, Temel Y, Duchin Y, Individualized parcellation of the subthalamic nucleus in patients with Parkinson’s disease with 7T MRI. Neuroimage. 2018;168:403411.

    • Search Google Scholar
    • Export Citation
  • 13

    Wodarg F, Herzog J, Reese R, Stimulation site within the MRI-defined STN predicts postoperative motor outcome. Mov Disord. 2012;27(7):874879.

    • Search Google Scholar
    • Export Citation
  • 14

    Hamel W, Fietzek U, Morsnowski A, Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: evaluation of active electrode contacts. J Neurol Neurosurg Psychiatry. 2003;74(8):10361046.

    • Search Google Scholar
    • Export Citation
  • 15

    Herzog J, Fietzek U, Hamel W, Most effective stimulation site in subthalamic deep brain stimulation for Parkinson’s disease. Mov Disord. 2004;19(9):10501054.

    • Search Google Scholar
    • Export Citation
  • 16

    Welter M-L, Schüpbach M, Czernecki V, Optimal target localization for subthalamic stimulation in patients with Parkinson disease. Neurology. 2014;82(15):13521361.

    • Search Google Scholar
    • Export Citation
  • 17

    Volkmann J, Herzog J, Kopper F, Deuschl G. Introduction to the programming of deep brain stimulators. Mov Disord. 2002;17(suppl 3):S181S187.

    • Search Google Scholar
    • Export Citation
  • 18

    Hunka K, Suchowersky O, Wood S, Nursing time to program and assess deep brain stimulators in movement disorder patients. J Neurosci Nurs. 2005;37(4):204210.

    • Search Google Scholar
    • Export Citation
  • 19

    Volkmann J, Moro E, Pahwa R. Basic algorithms for the programming of deep brain stimulation in Parkinson’s disease. Mov Disord. 2006;21(suppl 14):S284S289.

    • Search Google Scholar
    • Export Citation
  • 20

    Picillo M, Lozano AM, Kou N, Programming deep brain stimulation for Parkinson’s disease: the Toronto Western Hospital algorithms. Brain Stimul. 2016;9(3):425437.

    • Search Google Scholar
    • Export Citation
  • 21

    Rizzone M, Lanotte M, Bergamasco B, Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters. J Neurol Neurosurg Psychiatry. 2001;71(2):215219.

    • Search Google Scholar
    • Export Citation
  • 22

    Moro E, Esselink RJA, Xie J, The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology. 2002;59(5):706713.

    • Search Google Scholar
    • Export Citation
  • 23

    Krack P, Fraix V, Mendes A, Postoperative management of subthalamic nucleus stimulation for Parkinson’s disease. Mov Disord. 2002;17(suppl 3):S188S197.

    • Search Google Scholar
    • Export Citation
  • 24

    Dayal V, Limousin P, Foltynie T. Subthalamic nucleus deep brain stimulation in Parkinson’s disease: the effect of varying stimulation parameters. J Parkinsons Dis. 2017;7(2):235245.

    • Search Google Scholar
    • Export Citation
  • 25

    McIntyre CC, Mori S, Sherman DL, Electric field and stimulating influence generated by deep brain stimulation of the subthalamic nucleus. Clin Neurophysiol. 2004;115(3):589595.

    • Search Google Scholar
    • Export Citation
  • 26

    Sotiropoulos SN, Steinmetz PN. Assessing the direct effects of deep brain stimulation using embedded axon models. J Neural Eng. 2007;4(2):107119.

    • Search Google Scholar
    • Export Citation
  • 27

    Rattay F. Analysis of models for external stimulation of axons. IEEE Trans Biomed Eng. 1986;33(10):974977.

  • 28

    Butson CR, McIntyre CC. Role of electrode design on the volume of tissue activated during deep brain stimulation. J Neural Eng. 2006;3(1):18.

    • Search Google Scholar
    • Export Citation
  • 29

    Ranck JB Jr. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975;98(3):417440.

    • Search Google Scholar
    • Export Citation
  • 30

    Åström M, Diczfalusy E, Martens H, Wardell K. Relationship between neural activation and electric field distribution during deep brain stimulation. IEEE Trans Biomed Eng. 2015;62(2):664672.

    • Search Google Scholar
    • Export Citation
  • 31

    Kuncel AM, Cooper SE, Grill WM. A method to estimate the spatial extent of activation in thalamic deep brain stimulation. Clin Neurophysiol. 2008;119(9):21482158.

    • Search Google Scholar
    • Export Citation
  • 32

    Mädler B, Coenen VA. Explaining clinical effects of deep brain stimulation through simplified target-specific modeling of the volume of activated tissue. AJNR Am J Neuroradiol. 2012;33(6):10721080.

    • Search Google Scholar
    • Export Citation
  • 33

    Reich MM, Brumberg J, Pozzi NG, Progressive gait ataxia following deep brain stimulation for essential tremor: adverse effect or lack of efficacy? Brain. 2016;139(11):29482956.

    • Search Google Scholar
    • Export Citation
  • 34

    Akram H, Miller S, Lagrata S, Optimal deep brain stimulation site and target connectivity for chronic cluster headache. Neurology. 2017;89(20):20832091.

    • Search Google Scholar
    • Export Citation
  • 35

    Akram H, Dayal V, Mahlknecht P, Connectivity derived thalamic segmentation in deep brain stimulation for tremor. Neuroimage Clin. 2018;18:130142.

    • Search Google Scholar
    • Export Citation
  • 36

    Bunaux K, Tir M, Constans J-M, Predicting current thresholds for pyramidal tract activation using volume of activated tissue modeling in patients undergoing deep brain stimulation surgery. World Neurosurg. 2018;117:e692e697.

    • Search Google Scholar
    • Export Citation
  • 37

    Goetz CG, Tilley BC, Shaftman SR, Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008;23(15):21292170.

    • Search Google Scholar
    • Export Citation
  • 38

    Langston JW, Widner H, Goetz CG, Core assessment program for intracerebral transplantations (CAPIT). Mov Disord. 1992;7(1):213.

  • 39

    Weintraub D, Hoops S, Shea JA, Validation of the Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease. Mov Disord. 2009;24(10):14611467.

    • Search Google Scholar
    • Export Citation
  • 40

    Cockrell JR, Folstein MF. Mini-Mental State Examination (MMSE). Psychopharmacol Bull. 1988;24(4):689692.

  • 41

    Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979;134:382389.

  • 42

    Dujardin K, Sockeel P, Delliaux M, The Lille Apathy Rating Scale: validation of a caregiver-based version. Mov Disord. 2008;23(6):845849.

    • Search Google Scholar
    • Export Citation
  • 43

    Tomlinson CL, Stowe R, Patel S, Systematic review of levodopa dose equivalency reporting in Parkinson’s disease. Mov Disord. 2010;25(15):26492653.

    • Search Google Scholar
    • Export Citation
  • 44

    Lefranc M, Derrey S, Merle P, High-resolution 3-dimensional T2*-weighted angiography (HR 3-D SWAN): an optimized 3-T magnetic resonance imaging sequence for targeting the subthalamic nucleus. Neurosurgery. 2014;74(6):615627.

    • Search Google Scholar
    • Export Citation
  • 45

    Lefranc M, Le Gars D. Robotic implantation of deep brain stimulation leads, assisted by intra-operative, flat-panel CT. Acta Neurochir (Wien). 2012;154(11):20692074.

    • Search Google Scholar
    • Export Citation
  • 46

    Lefranc M, Zouitina Y, Tir M, Asleep robot-assisted surgery for the implantation of subthalamic electrodes provides the same clinical improvement and therapeutic window as awake surgery. World Neurosurg. 2017;106:602608.

    • Search Google Scholar
    • Export Citation
  • 47

    Tir M, Devos D, Blond S, Exhaustive, one-year follow-up of subthalamic nucleus deep brain stimulation in a large, single-center cohort of parkinsonian patients. Neurosurgery. 2007;61(2):297305.

    • Search Google Scholar
    • Export Citation
  • 48

    Krack P, Batir A, Van Blercom N, Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med. 2003;349(20):19251934.

    • Search Google Scholar
    • Export Citation
  • 49

    Hariz G-M, Nakajima T, Limousin P, Gender distribution of patients with Parkinson’s disease treated with subthalamic deep brain stimulation; a review of the 2000-2009 literature. Parkinsonism Relat Disord. 2011;17(3):146149.

    • Search Google Scholar
    • Export Citation
  • 50

    Pollo C, Kaelin-Lang A, Oertel MF, Directional deep brain stimulation: an intraoperative double-blind pilot study. Brain. 2014;137(Pt 7):20152026.

    • Search Google Scholar
    • Export Citation
  • 51

    Steigerwald F, Müller L, Johannes S, Directional deep brain stimulation of the subthalamic nucleus: a pilot study using a novel neurostimulation device. Mov Disord. 2016;31(8):12401243.

    • Search Google Scholar
    • Export Citation
  • 52

    Mathai A, Wichmann T, Smith Y. More than meets the eye—myelinated axons crowd the subthalamic nucleus. Mov Disord. 2013;28(13):18111815.

    • Search Google Scholar
    • Export Citation
  • 53

    Gunduz A, Foote KD, Okun MS. Reengineering deep brain stimulation for movement disorders: Emerging technologies. Curr Opin Biomed Eng. 2017;4:97105.

    • Search Google Scholar
    • Export Citation
  • 54

    Contarino MF, Bour LJ, Verhagen R, Directional steering: a novel approach to deep brain stimulation. Neurology. 2014;83(13):11631169.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 269 269 158
Full Text Views 45 45 35
PDF Downloads 37 37 30
EPUB Downloads 0 0 0