Limited utility of 5-ALA optical fluorescence in endoscopic endonasal skull base surgery: a multicenter retrospective study

View More View Less
  • 1 Department of Neurosurgery, Medical University of Vienna, Austria;
  • 2 Department of Neurosurgery, Keck School of Medicine, University of Southern California, Los Angeles, California; and
  • 3 Department of Neurological Surgery, NewYork-Presbyterian Hospital/Weill Cornell Medicine, New York, New York
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

OBJECTIVE

Incomplete resection of skull base pathology may result in local tumor recurrence. This study investigates the utility of 5-aminolevulinic acid (5-ALA) fluorescence during endoscopic endonasal approaches (EEAs) to increase visibility of pathologic tissue.

METHODS

This retrospective multicenter series comprises patients with planned resection of an anterior skull base lesion who received preoperative 5-ALA at two tertiary care centers. Diagnostic use of a blue light endoscope was performed during EEA for all cases. Demographic and tumor characteristics as well as fluorescence status, quality, and homogeneity were assessed for each skull base pathology.

RESULTS

Twenty-eight skull base pathologies underwent blue-light EEA with preoperative 5-ALA, including 15 pituitary adenomas (54%), 4 meningiomas (14%), 3 craniopharyngiomas (11%), 2 Rathke’s cleft cysts (7%), as well as plasmacytoma, esthesioneuroblastoma, and sinonasal squamous cell carcinoma. Of these, 6 (21%) of 28 showed invasive growth into surrounding structures such as dura, bone, or compartments of the cavernous sinus. Tumor fluorescence was detected in 2 cases (7%), with strong fluorescence in 1 tuberculum sellae meningioma and vague fluorescence in 1 pituicytoma. In all other cases fluorescence was absent. Faint fluorescence of the normal pituitary gland was seen in 1 (7%) of 15 cases. A comparison between the particular tumor entities as well as a correlation between invasiveness, WHO grade, Ki-67, and positive fluorescence did not show any significant association.

CONCLUSIONS

With the possible exception of meningiomas, 5-ALA fluorescence has limited utility in the majority of endonasal skull base surgeries, although other pathology may be worth investigating.

ABBREVIATIONS 5-ALA = 5-aminolevulinic acid; EEA = endoscopic endonasal approach; HGG = high-grade glioma; ICG = indocyanine green; IHC = immunohistochemical; IQR = interquartile range; PDD = Photodynamic Diagnosis.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Gabriel Zada: Keck School of Medicine, University of Southern California, Los Angeles, CA. gabriel.zada@med.usc.edu.

ACCOMPANYING EDITORIAL DOI: 10.3171/2020.7.JNS201870.

INCLUDE WHEN CITING Published online October 30, 2020; DOI: 10.3171/2020.5.JNS201171.

Disclosures The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

  • 1

    Schwartz TH, Morgenstern PF, Anand VK. Lessons learned in the evolution of endoscopic skull base surgery. J Neurosurg. 2019;130(2):337346.

    • Search Google Scholar
    • Export Citation
  • 2

    Ivan ME, Han SJ, Aghi MK. Tumors of the anterior skull base. Expert Rev Neurother. 2014;14(4):425438.

  • 3

    Almutairi RD, Muskens IS, Cote DJ, Gross total resection of pituitary adenomas after endoscopic vs. microscopic transsphenoidal surgery: a meta-analysis. Acta Neurochir (Wien). 2018;160(5):10051021.

    • Search Google Scholar
    • Export Citation
  • 4

    Bao X, Deng K, Liu X, Extended transsphenoidal approach for pituitary adenomas invading the cavernous sinus using multiple complementary techniques. Pituitary. 2016;19(1):110.

    • Search Google Scholar
    • Export Citation
  • 5

    Younus I, Forbes JA, Ordóñez-Rubiano EG, Radiation therapy rather than prior surgery reduces extent of resection during endonasal endoscopic reoperation for craniopharyngioma. Acta Neurochir (Wien). 2018;160(7):14251431.

    • Search Google Scholar
    • Export Citation
  • 6

    Van Gompel JJ, Giannini C, Olsen KD, Long-term outcome of esthesioneuroblastoma: Hyams grade predicts patient survival. J Neurol Surg B Skull Base. 2012;73(5):331336.

    • Search Google Scholar
    • Export Citation
  • 7

    Hadjipanayis CG, Widhalm G, Stummer W. What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas? Neurosurgery. 2015;77(5):663673.

    • Search Google Scholar
    • Export Citation
  • 8

    Stummer W, Pichlmeier U, Meinel T, Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392401.

    • Search Google Scholar
    • Export Citation
  • 9

    Hadjipanayis CG, Stummer W. 5-ALA and FDA approval for glioma surgery. J Neurooncol. 2019;141(3):479486.

  • 10

    Marhold F, Mercea PA, Scheichel F, Detailed analysis of 5-aminolevulinic acid induced fluorescence in different brain metastases at two specialized neurosurgical centers: experience in 157 cases. J Neurosurg. 2020;133(4):10321043.

    • Search Google Scholar
    • Export Citation
  • 11

    Millesi M, Kiesel B, Mischkulnig M, Analysis of the surgical benefits of 5-ALA-induced fluorescence in intracranial meningiomas: experience in 204 meningiomas. J Neurosurg. 2016;125(6):14081419.

    • Search Google Scholar
    • Export Citation
  • 12

    Widhalm G, Wolfsberger S, Minchev G, 5-Aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement. Cancer. 2010;116(6):15451552.

    • Search Google Scholar
    • Export Citation
  • 13

    Eljamel MS, Leese G, Moseley H. Intraoperative optical identification of pituitary adenomas. J Neurooncol. 2009;92(3):417421.

  • 14

    Nemes A, Fortmann T, Poeschke S, 5-ALA fluorescence in native pituitary adenoma cell lines: resection control and basis for photodynamic therapy (PDT)? PLoS One. 2016;11(9):e0161364.

    • Search Google Scholar
    • Export Citation
  • 15

    Marbacher S, Klinger E, Schwyzer L, Use of fluorescence to guide resection or biopsy of primary brain tumors and brain metastases. Neurosurg Focus. 2014;36(2):E10.

    • Search Google Scholar
    • Export Citation
  • 16

    Cornelius JF, Eismann L, Ebbert L, 5-Aminolevulinic acid-based photodynamic therapy of chordoma: In vitro experiments on a human tumor cell line. Photodiagn Photodyn Ther. 2017;20:111115.

    • Search Google Scholar
    • Export Citation
  • 17

    Cornelius JF, Kamp MA, Tortora A, Surgery of small anterior skull base meningiomas by endoscopic 5-aminolevulinic acid fluorescence guidance: first clinical experience. World Neurosurg. 2019;122:e890e895.

    • Search Google Scholar
    • Export Citation
  • 18

    Chang SW, Donoho DA, Zada G. Use of optical fluorescence agents during surgery for pituitary adenomas: current state of the field. J Neurooncol. 2019;141(3):585593.

    • Search Google Scholar
    • Export Citation
  • 19

    Kiesel B, Mischkulnig M, Woehrer A, Systematic histopathological analysis of different 5-aminolevulinic acid-induced fluorescence levels in newly diagnosed glioblastomas. J Neurosurg. 2018;129(2):341353.

    • Search Google Scholar
    • Export Citation
  • 20

    Schubert T, Rausch S, Fahmy O, Optical improvements in the diagnosis of bladder cancer: implications for clinical practice. Ther Adv Urol. 2017;9(11):251260.

    • Search Google Scholar
    • Export Citation
  • 21

    Stummer W, Novotny A, Stepp H, Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg. 2000;93(6):10031013.

    • Search Google Scholar
    • Export Citation
  • 22

    Micko A, Oberndorfer J, Weninger WJ, Challenging Knosp high-grade pituitary adenomas. J Neurosurg. 2020;132(6):17391746.

  • 23

    Maeda H, Wu J, Sawa T, Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review. J Control Release. 2000;65(1-2):271284.

    • Search Google Scholar
    • Export Citation
  • 24

    Cho SS, Salinas R, Lee JYK. Indocyanine-green for fluorescence-guided surgery of brain tumors: evidence, techniques, and practical experience. Front Surg. 2019;6:11.

    • Search Google Scholar
    • Export Citation
  • 25

    Mischkulnig M, Kiesel B, Borkovec M, High interobserver agreement in the subjective classification of 5-aminolevulinic acid fluorescence levels in newly diagnosed glioblastomas. Lasers Surg Med. 2020;52(9):814821.

    • Search Google Scholar
    • Export Citation
  • 26

    Jeon JW, Cho SS, Nag S, Near-infrared optical contrast of skull base tumors during endoscopic endonasal surgery. Oper Neurosurg (Hagerstown). 2019;17(1):3242.

    • Search Google Scholar
    • Export Citation
  • 27

    Yamada S, Takada K. Angiogenesis in pituitary adenomas. Microsc Res Tech. 2003;60(2):236243.

  • 28

    Jugenburg M, Kovacs K, Stefaneanu L, Scheithauer BW. Vasculature in nontumorous hypophyses, pituitary adenomas, and carcinomas: a quantitative morphologic study. Endocr Pathol. 1995;6(2):115124.

    • Search Google Scholar
    • Export Citation
  • 29

    Di Ieva A, Grizzi F, Ceva-Grimaldi G, Fractal dimension as a quantitator of the microvasculature of normal and adenomatous pituitary tissue. J Anat. 2007;211(5):673680.

    • Search Google Scholar
    • Export Citation
  • 30

    Cho SS, Zeh R, Pierce JT, Folate receptor near-infrared optical imaging provides sensitive and specific intraoperative visualization of nonfunctional pituitary adenomas. Oper Neurosurg (Hagerstown). 2019;16(1):5970.

    • Search Google Scholar
    • Export Citation
  • 31

    Belykh E, Miller EJ, Hu D, Scanning fiber endoscope improves detection of 5-aminolevulinic acid-induced protoporphyrin IX fluorescence at the boundary of infiltrative glioma. World Neurosurg. 2018;113:e51e69.

    • Search Google Scholar
    • Export Citation
  • 32

    Haj-Hosseini N, Richter J, Andersson-Engels S, Wårdell K. Optical touch pointer for fluorescence guided glioblastoma resection using 5-aminolevulinic acid. Lasers Surg Med. 2010;42(1):914.

    • Search Google Scholar
    • Export Citation
  • 33

    Valdés PA, Leblond F, Kim A, Quantitative fluorescence in intracranial tumor: implications for ALA-induced PpIX as an intraoperative biomarker. J Neurosurg. 2011;115(1):1117.

    • Search Google Scholar
    • Export Citation
  • 34

    Teng L, Nakada M, Zhao SG, Silencing of ferrochelatase enhances 5-aminolevulinic acid-based fluorescence and photodynamic therapy efficacy. Br J Cancer. 2011;104(5):798807.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 620 620 268
Full Text Views 62 62 23
PDF Downloads 28 28 18
EPUB Downloads 0 0 0