The cortical organization of language: distilling human connectome insights for supratentorial neurosurgery

View More View Less
  • 1 Brain Mapping Unit, Department of Psychiatry, University of Cambridge;
  • 2 The Alan Turing Institute, London, United Kingdom;
  • 3 Department of Neurosurgery, Medical University of South Carolina, Charleston, South Carolina; and
  • 4 Department of Neurosurgery, Prince of Wales Private Hospital, Randwick, New South Wales, Australia
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

Connectomics is the production and study of detailed “connection” maps within the nervous system. With unprecedented advances in imaging and high-performance computing, the construction of individualized connectomes for routine neurosurgical use is on the horizon. Multiple projects, including the Human Connectome Project (HCP), have unraveled new and exciting data describing the functional and structural connectivity of the brain. However, the abstraction from much of these data to clinical relevance remains elusive. In the context of preserving neurological function after supratentorial surgery, abstracting surgically salient points from the vast computational data in connectomics is of paramount importance. Herein, the authors discuss four interesting observations from the HCP data that have surgical relevance, with an emphasis on the cortical organization of language: 1) the existence of a motor speech area outside of Broca’s area, 2) the eloquence of the frontal aslant tract, 3) the explanation of the medial frontal cognitive control networks, and 4) the establishment of the second ventral stream of language processing. From these connectome observations, the authors discuss the anatomical basis of their insights as well as relevant clinical applications. Together, these observations provide a firm platform for neurosurgeons to advance their knowledge of the cortical networks involved in language and to ultimately improve surgical outcomes. It is hoped that this report encourages neurosurgeons to explore new vistas in connectome-based neurosurgery.

ABBREVIATIONS CEN = central executive network; DMN = default mode network; FAT = frontal aslant tract; fMRI = functional MRI; HCP = Human Connectome Project; IFOF = inferior fronto-occipital fasciculus; ILF = inferior longitudinal fasciculus; MTG = middle temporal gyrus; SLF = superior longitudinal fasciculus; SMA = supplementary motor area; WMT = white matter tract.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Michael E. Sughrue: Prince of Wales Private Hospital, Randwick, NSW, Australia. sughruevs@gmail.com.

INCLUDE WHEN CITING Published online July 31, 2020; DOI: 10.3171/2020.5.JNS191281.

Disclosures Dr. Sughrue has direct stock ownership in Omniscient Technologies.

  • 1

    Glasser MF, Smith SM, Marcus DS, The Human Connectome Project’s neuroimaging approach. Nat Neurosci. 2016;19(9):11751187.

  • 2

    Bullmore E, Sporns O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci. 2009;10(3):186198.

    • Search Google Scholar
    • Export Citation
  • 3

    Poologaindran A, Suckling J, Sughrue ME. Elucidating the principles of brain network organization through neurosurgery. Letter. Neurosurgery. 2020;87(1):E80E81.

    • Search Google Scholar
    • Export Citation
  • 4

    Baker CM, Burks JD, Briggs RG, A Connectomic Atlas of the Human Cerebrum—Chapter 1: Introduction, Methods, and Significance. Oper Neurosurg (Hagerstown). 2018;15(suppl_1):S1S9.

    • Search Google Scholar
    • Export Citation
  • 5

    Baker CM, Burks JD, Briggs RG, A Connectomic Atlas of the Human Cerebrum—Chapter 3: The Motor, Premotor, and Sensory Cortices. Oper Neurosurg (Hagerstown). 2018;15(suppl_1):S75S121.

    • Search Google Scholar
    • Export Citation
  • 6

    Dichter BK, Breshears JD, Leonard MK, Chang EF. The control of vocal pitch in human laryngeal motor cortex. Cell. 2018;174(1):2131.e9.

    • Search Google Scholar
    • Export Citation
  • 7

    Baker CM, Burks JD, Briggs RG, A Connectomic Atlas of the Human Cerebrum—Chapter 6: The Temporal Lobe. Oper Neurosurg (Hagerstown). 2018;15(suppl_1):S245S294.

    • Search Google Scholar
    • Export Citation
  • 8

    Baker CM, Burks JD, Briggs RG, A Connectomic Atlas of the Human Cerebrum—Chapter 7: The Lateral Parietal Lobe. Oper Neurosurg (Hagerstown). 2018;15(suppl_1):S295S349.

    • Search Google Scholar
    • Export Citation
  • 9

    Ji JL, Spronk M, Kulkarni K, Mapping the human brain’s cortical-subcortical functional network organization. Neuroimage. 2019;185:3557.

    • Search Google Scholar
    • Export Citation
  • 10

    Chang EF, Kurteff G, Andrews JP, Pure apraxia of speech after resection based in the posterior middle frontal gyrus. Neurosurgery. Published online February 25, 2020. doi:10.1093/neuros/nyaa002

    • Search Google Scholar
    • Export Citation
  • 11

    Panov F, Levin E, de Hemptinne C, Intraoperative electrocorticography for physiological research in movement disorders: principles and experience in 200 cases. J Neurosurg. 2017;126(1):122131.

    • Search Google Scholar
    • Export Citation
  • 12

    Poologaindran A, Ivanishvili Z, Morrison MD, The effect of unilateral thalamic deep brain stimulation on the vocal dysfunction in a patient with spasmodic dysphonia: interrogating cerebellar and pallidal neural circuits. J Neurosurg. 2018;128(2):575582.

    • Search Google Scholar
    • Export Citation
  • 13

    Avecillas-Chasin JM, Poologaindran A, Morrison MD, Unilateral thalamic deep brain stimulation for voice tremor. Stereotact Funct Neurosurg. 2018;96(6):392399.

    • Search Google Scholar
    • Export Citation
  • 14

    Craig-McQuaide A, Akram H, Zrinzo L, Tripoliti E. A review of brain circuitries involved in stuttering. Front Hum Neurosci. 2014;8:884.

  • 15

    Briggs RG, Conner AK, Rahimi M, A Connectomic Atlas of the Human Cerebrum—Chapter 14: Tractographic Description of the Frontal Aslant Tract. Oper Neurosurg (Hagerstown). 2018;15(suppl_1):S444S449.

    • Search Google Scholar
    • Export Citation
  • 16

    Catani M, Mesulam MM, Jakobsen E, A novel frontal pathway underlies verbal fluency in primary progressive aphasia. Brain. 2013;136(pt 8):26192628.

    • Search Google Scholar
    • Export Citation
  • 17

    Kemerdere R, de Champfleur NM, Deverdun J, Role of the left frontal aslant tract in stuttering: a brain stimulation and tractographic study. J Neurol. 2016;263(1):157167.

    • Search Google Scholar
    • Export Citation
  • 18

    Baker CM, Burks JD, Briggs RG, The crossed frontal aslant tract: a possible pathway involved in the recovery of supplementary motor area syndrome. Brain Behav. 2018;8(3):e00926.

    • Search Google Scholar
    • Export Citation
  • 19

    Kinoshita M, de Champfleur NM, Deverdun J, Role of fronto-striatal tract and frontal aslant tract in movement and speech: an axonal mapping study. Brain Struct Funct. 2015;220(6):33993412.

    • Search Google Scholar
    • Export Citation
  • 20

    Selvanathan SK, Hammouche S, Salminen HJ, Jenkinson MD. Outcome and prognostic features in anaplastic ganglioglioma: analysis of cases from the SEER database. J Neurooncol. 2011;105(3):539545.

    • Search Google Scholar
    • Export Citation
  • 21

    Toyoda K. Anterior cerebral artery and Heubner’s artery territory infarction. Front Neurol Neurosci. 2012;30:120122.

  • 22

    Baker CM, Burks JD, Briggs RG, A Connectomic Atlas of the Human Cerebrum—Chapter 4: The Medial Frontal Lobe, Anterior Cingulate Gyrus, and Orbitofrontal Cortex. Oper Neurosurg (Hagerstown). 2018;15(suppl_1):S122S174.

    • Search Google Scholar
    • Export Citation
  • 23

    Briggs RG, Conner AK, Baker CM, A Connectomic Atlas of the Human Cerebrum—Chapter 18: The Connectional Anatomy of Human Brain Networks. Oper Neurosurg (Hagerstown). 2018;15(suppl_1):S470S480.

    • Search Google Scholar
    • Export Citation
  • 24

    Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100(1):253258.

    • Search Google Scholar
    • Export Citation
  • 25

    Raichle ME. The brain’s default mode network. Annu Rev Neurosci. 2015;38:433447.

  • 26

    Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Struct Funct. 2010;214(5–6):655667.

    • Search Google Scholar
    • Export Citation
  • 27

    Margulies DS, Ghosh SS, Goulas A, Situating the default-mode network along a principal gradient of macroscale cortical organization. Proc Natl Acad Sci U S A. 2016;113(44):1257412579.

    • Search Google Scholar
    • Export Citation
  • 28

    Lamichhane B, Dhamala M. The salience network and its functional architecture in a perceptual decision: an effective connectivity study. Brain Connect. 2015;5(6):362370.

    • Search Google Scholar
    • Export Citation
  • 29

    Mak LE, Minuzzi L, MacQueen G, The default mode network in healthy individuals: a systematic review and meta-analysis. Brain Connect. 2017;7(1):2533.

    • Search Google Scholar
    • Export Citation
  • 30

    Otti A, Guendel H, Wohlschläger A, Frequency shifts in the anterior default mode network and the salience network in chronic pain disorder. BMC Psychiatry. 2013;13:84.

    • Search Google Scholar
    • Export Citation
  • 31

    Burks JD, Bonney PA, Conner AK, A method for safely resecting anterior butterfly gliomas: the surgical anatomy of the default mode network and the relevance of its preservation. J Neurosurg. 2017;126(6):17951811.

    • Search Google Scholar
    • Export Citation
  • 32

    Siegel JS, Snyder AZ, Metcalf NV, The circuitry of abulia: insights from functional connectivity MRI. Neuroimage Clin. 2014;6:320326.

    • Search Google Scholar
    • Export Citation
  • 33

    Tremblay P, Dick AS. Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain Lang. 2016;162:6071.

    • Search Google Scholar
    • Export Citation
  • 34

    Anderson JM, Gilmore R, Roper S, Conduction aphasia and the arcuate fasciculus: a reexamination of the Wernicke-Geschwind model. Brain Lang. 1999;70(1):112.

    • Search Google Scholar
    • Export Citation
  • 35

    Duffau H, Herbet G, Moritz-Gasser S. Toward a pluri-component, multimodal, and dynamic organization of the ventral semantic stream in humans: lessons from stimulation mapping in awake patients. Front Syst Neurosci. 2013;7:44.

    • Search Google Scholar
    • Export Citation
  • 36

    Ojemann GA, Dodrill CB. Verbal memory deficits after left temporal lobectomy for epilepsy. Mechanism and intraoperative prediction. J Neurosurg. 1985;62(1):101107.

    • Search Google Scholar
    • Export Citation
  • 37

    Bang J, Spina S, Miller BL. Frontotemporal dementia. Lancet. 2015;386(10004):16721682.

  • 38

    Mandonnet E, Nouet A, Gatignol P, Does the left inferior longitudinal fasciculus play a role in language? A brain stimulation study. Brain. 2007;130(pt 3):623629.

    • Search Google Scholar
    • Export Citation
  • 39

    Almairac F, Herbet G, Moritz-Gasser S, The left inferior fronto-occipital fasciculus subserves language semantics: a multilevel lesion study. Brain Struct Funct. 2015;220(4):19831995.

    • Search Google Scholar
    • Export Citation
  • 40

    Conner AK, Briggs RG, Sali G, A Connectomic Atlas of the Human Cerebrum—Chapter 13: Tractographic Description of the Inferior Fronto-Occipital Fasciculus. Oper Neurosurg (Hagerstown). 2018;15(suppl_1):S436S443.

    • Search Google Scholar
    • Export Citation
  • 41

    Khan OH, Herbet G, Moritz-Gasser S, Duffau H. The role of left inferior fronto-occipital fascicle in verbal perseveration: a brain electrostimulation mapping study. Brain Topogr. 2014;27(3):403411.

    • Search Google Scholar
    • Export Citation
  • 42

    Pilcher WH, Silbergeld DL, Berger MS, Ojemann GA. Intraoperative electrocorticography during tumor resection: impact on seizure outcome in patients with gangliogliomas. J Neurosurg. 1993;78(6):891902.

    • Search Google Scholar
    • Export Citation
  • 43

    Sarubbo S, De Benedictis A, Maldonado IL, Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Struct Funct. 2013;218(1):2137.

    • Search Google Scholar
    • Export Citation
  • 44

    Herbet G, Zemmoura I, Duffau H. Functional anatomy of the inferior longitudinal fasciculus: from historical reports to current hypotheses. Front Neuroanat. 2018;12:77.

    • Search Google Scholar
    • Export Citation
  • 45

    Sali G, Briggs RG, Conner AK, A Connectomic Atlas of the Human Cerebrum—Chapter 11: Tractographic Description of the Inferior Longitudinal Fasciculus. Oper Neurosurg (Hagerstown). 2018;15(suppl_1):S423S428.

    • Search Google Scholar
    • Export Citation
  • 46

    Duffau H, Moritz-Gasser S, Mandonnet E. A re-examination of neural basis of language processing: proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang. 2014;131:110.

    • Search Google Scholar
    • Export Citation
  • 47

    Hickok G, Poeppel D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition. 2004;92(1–2):6799.

    • Search Google Scholar
    • Export Citation
  • 48

    Conner AK, Briggs RG, Rahimi M, A Connectomic Atlas of the Human Cerebrum—Chapter 10: Tractographic Description of the Superior Longitudinal Fasciculus. Oper Neurosurg (Hagerstown). 2018;15(suppl_1):S407S422.

    • Search Google Scholar
    • Export Citation
  • 49

    Assem M, Glasser MF, Van Essen DC, Duncan J. A domain-general cognitive core defined in multimodally parcellated human cortex. Cereb Cortex. 2020;30(8):43614380.

    • Search Google Scholar
    • Export Citation
  • 50

    Lanyon LJ, Barton JJ. Visual search and line bisection in hemianopia: computational modelling of cortical compensatory mechanisms and comparison with hemineglect. PLoS One. 2013;8(2):e54919.

    • Search Google Scholar
    • Export Citation
  • 51

    Goulden N, Khusnulina A, Davis NJ, The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM. Neuroimage. 2014;99:180190.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1772 1772 1772
Full Text Views 160 160 160
PDF Downloads 130 130 130
EPUB Downloads 0 0 0