The orbitopterygoid corridor as a deep keyhole for endoscopic access to the paranasal sinuses and clivus

View More View Less
  • 1 Department of Neurosurgery, Lariboisière Hospital, University of Paris Diderot, Paris, France, and
  • 2 Department of Neurological Surgery, Duke University, Durham, North Carolina
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

OBJECTIVE

The anteromedial triangle (AMT) is the triangle formed by the ophthalmic (V1) and maxillary (V2) nerves. Opening of this bony space offers a limited access to the sphenoid sinus (SphS). This study aims to demonstrate the utility of the orbitopterygopalatine corridor (OPC), obtained by enlarging the AMT and transposing the contents of the pterygopalatine fossa (PPF) and V2, as an entrance to the SphS, maxillary sinus (MaxS), and nasal cavity.

METHODS

Five formalin-injected cadaveric specimens were used for this study (10 approaches). A classic pterional approach was performed. An OPC was created through the inferior orbital fissure, between the orbit and the PPF, by transposing the PPF inferiorly. The extent of the OPC was measured using neuronavigation and manual measurements. Two illustrative cases using the OPC to access skull base tumors are presented in the body of the article.

RESULTS

Via the OPC, the SphS, MaxS, ethmoid sinus (EthS), and nasal cavity could be accessed. The use of endoscopic assistance through the OPC achieved better visualization of the EthS, SphS, MaxS, clivus, and nasal cavity. A significant gain in the area of exposure could be achieved using the OPC compared to the AMT (22.4 mm2 vs 504.1 mm2).

CONCLUSIONS

Opening of the AMT and transposition of V2 and the contents of the PPF creates the OPC, a potentially useful deep keyhole to access the paranasal sinuses and clival region through a middle fossa approach. It is a valuable alternative approach to reach deep-seated skull base lesions infiltrating the cavernous sinus and middle cranial fossa and extending into the paranasal sinus.

ABBREVIATIONS AMT = anteromedial triangle; EEA = endoscopic endonasal approach; EthS = ethmoid sinus; FR = foramen rotundum; ICA = internal carotid artery; IOF = inferior orbital fissure; MaxS = maxillary sinus; OM = orbital muscle of Müller; OPC = orbitopterygopalatine corridor; PPF = pterygopalatine fossa; SOF = superior orbital fissure; SphS = sphenoid sinus.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Sébastien Froelich: Hôpital Lariboisière, Paris VII–Diderot University, Paris, France. sebastien.froelich@lrb.aphp.fr.

INCLUDE WHEN CITING Published online June 12, 2020; DOI: 10.3171/2020.3.JNS2022.

K.O. and K.W. contributed equally to this work.

Disclosures The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

  • 1

    Mullan S. Treatment of carotid-cavernous fistulas by cavernous sinus occlusion. J Neurosurg. 1979;50(2):131144.

  • 2

    Rhoton AL Jr. The cavernous sinus, the cavernous venous plexus, and the carotid collar. Neurosurgery. 2002;51(4)(suppl):S375S410.

  • 3

    Sekhar LN, Møller AR. Operative management of tumors involving the cavernous sinus. J Neurosurg. 1986;64(6):879889.

  • 4

    Sincoff EH, Liu JK, Matsen L, A novel treatment approach to cholesterol granulomas. Technical note. J Neurosurg. 2007;107(2):446450.

  • 5

    Sanan A, Abdel Aziz KM, Janjua RM, Colored silicone injection for use in neurosurgical dissections: anatomic technical note. Neurosurgery. 1999;45(5):12671274.

    • Search Google Scholar
    • Export Citation
  • 6

    Dolenc VV. Frontotemporal epidural approach to trigeminal neurinomas. Acta Neurochir (Wien). 1994;130(1-4):5565.

  • 7

    Fisch U. Infratemporal fossa approach to tumours of the temporal bone and base of the skull. J Laryngol Otol. 1978;92(11):949967.

  • 8

    Hakuba A, Tanaka K, Suzuki T, Nishimura S. A combined orbitozygomatic infratemporal epidural and subdural approach for lesions involving the entire cavernous sinus. J Neurosurg. 1989;71(5 Pt 1):699704.

    • Search Google Scholar
    • Export Citation
  • 9

    Ohue S, Fukushima T, Kumon Y, Preauricular transzygomatic anterior infratemporal fossa approach for tumors in or around infratemporal fossa lesions. Neurosurg Rev. 2012;35(4):583592.

    • Search Google Scholar
    • Export Citation
  • 10

    Parkinson D. A surgical approach to the cavernous portion of the carotid artery. Anatomical studies and case report. J Neurosurg. 1965;23(5):474483.

    • Search Google Scholar
    • Export Citation
  • 11

    Yoshida K, Kawase T. Trigeminal neurinomas extending into multiple fossae: surgical methods and review of the literature. J Neurosurg. 1999;91(2):202211.

    • Search Google Scholar
    • Export Citation
  • 12

    Cavallo LM, Cappabianca P, Galzio R, Endoscopic transnasal approach to the cavernous sinus versus transcranial route: anatomic study. Neurosurgery. 2005;56(2)(suppl):379389.

    • Search Google Scholar
    • Export Citation
  • 13

    Cavallo LM, Messina A, Gardner P, Extended endoscopic endonasal approach to the pterygopalatine fossa: anatomical study and clinical considerations. Neurosurg Focus. 2005;19(1):E5.

    • Search Google Scholar
    • Export Citation
  • 14

    Chibbaro S, Cornelius JF, Froelich S, Endoscopic endonasal approach in the management of skull base chordomas—clinical experience on a large series, technique, outcome, and pitfalls. Neurosurg Rev. 2014;37(2):217225.

    • Search Google Scholar
    • Export Citation
  • 15

    de Notaris M, Cavallo LM, Prats-Galino A, Endoscopic endonasal transclival approach and retrosigmoid approach to the clival and petroclival regions. Neurosurgery. 2009;65(6)(suppl):4252.

    • Search Google Scholar
    • Export Citation
  • 16

    Frank G, Sciarretta V, Calbucci F, The endoscopic transnasal transsphenoidal approach for the treatment of cranial base chordomas and chondrosarcomas. Neurosurgery. 2006;59(1)(suppl 1):ONS50ONS57.

    • Search Google Scholar
    • Export Citation
  • 17

    Kassam A, Snyderman CH, Mintz A, Expanded endonasal approach: the rostrocaudal axis. Part II. Posterior clinoids to the foramen magnum. Neurosurg Focus. 2005;19(1):E4.

    • Search Google Scholar
    • Export Citation
  • 18

    Kassam AB, Gardner P, Snyderman C, Expanded endonasal approach: fully endoscopic, completely transnasal approach to the middle third of the clivus, petrous bone, middle cranial fossa, and infratemporal fossa. Neurosurg Focus. 2005;19(1):E6.

    • Search Google Scholar
    • Export Citation
  • 19

    Morera VA, Fernandez-Miranda JC, Prevedello DM, “Far-medial” expanded endonasal approach to the inferior third of the clivus: the transcondylar and transjugular tubercle approaches. Neurosurgery. 2010;66(6)(suppl operative):211–220.

    • Search Google Scholar
    • Export Citation
  • 20

    Oyama K, Ikezono T, Tahara S, Petrous apex cholesterol granuloma treated via the endoscopic transsphenoidal approach. Acta Neurochir (Wien). 2007;149(3):299302.

    • Search Google Scholar
    • Export Citation
  • 21

    Stippler M, Gardner PA, Snyderman CH, Endoscopic endonasal approach for clival chordomas. Neurosurgery. 2009;64(2):268278.

  • 22

    Hanakita S, Chang WC, Watanabe K, Endoscopic endonasal approach to the anteromedial temporal fossa and mobilization of the lateral wall of the cavernous sinus through the inferior orbital fissure and V1-V2 corridor: an anatomic study and clinical considerations. World Neurosurg. 2018;116:e169e178.

    • Search Google Scholar
    • Export Citation
  • 23

    Komatsu F, Oda S, Shimoda M, Endoscopic endonasal approach to the middle cranial fossa through the cavernous sinus triangles: anatomical considerations. Neurol Med Chir (Tokyo). 2014;54(12):10041008.

    • Search Google Scholar
    • Export Citation
  • 24

    Thorp BD, Sreenath SB, Ebert CS, Zanation AM. Endoscopic skull base reconstruction: a review and clinical case series of 152 vascularized flaps used for surgical skull base defects in the setting of intraoperative cerebrospinal fluid leak. Neurosurg Focus. 2014;37(4):E4.

    • Search Google Scholar
    • Export Citation
  • 25

    Zwagerman NT, Zenonos G, Lieber S, Endoscopic transnasal skull base surgery: pushing the boundaries. J Neurooncol. 2016;130(2):319330.

    • Search Google Scholar
    • Export Citation
  • 26

    McCoul ED, Bedrosian JC, Akselrod O, Preservation of multidimensional quality of life after endoscopic pituitary adenoma resection. J Neurosurg. 2015;123(3):813820.

    • Search Google Scholar
    • Export Citation
  • 27

    Veyrat M, Verillaud B, Herman P, Bresson D. How I do it. The pedicled temporoparietal fascia flap for skull base reconstruction after endonasal endoscopic approaches. Acta Neurochir (Wien). 2016;158(12):22912294.

    • Search Google Scholar
    • Export Citation
  • 28

    Martins C, Li X, Rhoton AL Jr. Role of the zygomaticofacial foramen in the orbitozygomatic craniotomy: anatomic report. Neurosurgery. 2003;53(1):168173.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 344 344 344
Full Text Views 54 54 54
PDF Downloads 48 48 48
EPUB Downloads 0 0 0