Comparative efficacy of autologous versus cadaveric saphenous vein grafts in cerebral revascularization surgery

View More View Less
  • Department of Neurosurgery, University of Illinois at Chicago, Illinois
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

OBJECTIVE

Cerebral bypasses are performed for the purpose of either flow augmentation for ischemic cerebrovascular disease or flow replacement for vessel sacrifice during complex aneurysm or tumor surgery. Saphenous vein grafts (SVGs) are commonly used interposition grafts. The authors of this study sought to compare the efficacy of autologous versus cadaveric SVGs in a large series of cerebral bypasses using interposition vein grafts with long-term angiographic follow-up.

METHODS

All intracranial bypass procedures performed between 2001 and 2018 were reviewed. Demographic, clinical, angiographic, and operative data were recorded and then analyzed according to SVG type.

RESULTS

A total of 308 consecutive intracranial bypasses were performed during the study period, 53 (17.2%) of which were bypasses with an interposition SVG (38 autologous, 15 cadaveric). At a median follow-up of 2.2 months (IQR 0.2–29.1), 39 (73.6%) bypasses were patent (26 [68.4%] autologous, 13 [86.7%] cadaveric, p = 0.30). Comparing autologous and cadaveric SVG recipients, there were no statistically significant differences in age (p = 0.50), sex (p > 0.99), history of smoking (p = 0.75), hypertension (p > 0.99), diabetes mellitus (p = 0.13), indication for bypass (p = 0.27), or SVG diameter (p = 0.65). While there were higher intraoperative (autologous, 100.0 ml/min, IQR 84.3–147.5; cadaveric, 80.0 ml/min, IQR 47.3–107.8; p = 0.11) and postoperative (autologous, 142.2 ml/min, IQR 76.8–160.8; cadaveric, 92.0 ml/min, IQR 69.2–132.2; p = 0.42) volumetric flow rates in the autologous SVGs compared to those in the cadaveric SVGs, the difference between the two groups did not reach statistical significance. In addition, the blood flow index, or ratio of postoperative to intraoperative blood flow, for each bypass was similar between the groups (autologous, 1.3, IQR 0.9–1.6; cadaveric, 1.5, IQR 1.0–2.3; p = 0.37). Kaplan-Meier estimates showed no difference in bypass patency rates over time between autologous and cadaveric SVGs (p = 0.58).

CONCLUSIONS

Cadaveric SVGs are a reasonable interposition graft option in cerebral revascularization surgery when autologous grafts are not available.

ABBREVIATIONS QMRA = quantitative phase-contrast MRA; SVG = saphenous vein graft; WSS = wall shear stress.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Fady T. Charbel: University of Illinois at Chicago, IL. fcharbel@uic.edu.

INCLUDE WHEN CITING Published online May 22, 2020; DOI: 10.3171/2020.3.JNS192546.

Disclosures Dr. Charbel is a consultant for Transonic Inc.

  • 1

    Winkler EA, Yue JK, Deng H, National trends in cerebral bypass surgery in the United States, 2002–2014. Neurosurg Focus. 2019;46(2):E4.

    • Search Google Scholar
    • Export Citation
  • 2

    Amin-Hanjani S, Charbel FT. Flow-assisted surgical technique in cerebrovascular surgery. Surg Neurol. 2007;68(suppl 1):S4S11.

  • 3

    Rustemi O, Amin-Hanjani S, Shakur SF, Donor selection in flow replacement bypass surgery for cerebral aneurysms: quantitative analysis of long-term native donor flow sufficiency. Neurosurgery. 2016;78(3):332342.

    • Search Google Scholar
    • Export Citation
  • 4

    Liu JK, Kan P, Karwande SV, Couldwell WT. Conduits for cerebrovascular bypass and lessons learned from the cardiovascular experience. Neurosurg Focus. 2003;14(3):e3.

    • Search Google Scholar
    • Export Citation
  • 5

    Kawashima M, Rhoton AL Jr, Tanriover N, Microsurgical anatomy of cerebral revascularization. Part I: anterior circulation. J Neurosurg. 2005;102(1):116131.

    • Search Google Scholar
    • Export Citation
  • 6

    Regli L, Piepgras DG, Hansen KK. Late patency of long saphenous vein bypass grafts to the anterior and posterior cerebral circulation. J Neurosurg. 1995;83(5):806811.

    • Search Google Scholar
    • Export Citation
  • 7

    Walker PJ, Mitchell RS, McFadden PM, Early experience with cryopreserved saphenous vein allografts as a conduit for complex limb-salvage procedures. J Vasc Surg. 1993;18(4):561569.

    • Search Google Scholar
    • Export Citation
  • 8

    Martin RS III, Edwards WH, Mulherin JL Jr, Cryopreserved saphenous vein allografts for below-knee lower extremity revascularization. Ann Surg. 1994;219(6):664672.

    • Search Google Scholar
    • Export Citation
  • 9

    Posner MP, Makhoul RG, Altman M, Early results of infrageniculate arterial reconstruction using cryopreserved homograft saphenous conduit (CADVEIN) and combination low-dose systemic immunosuppression. J Am Coll Surg. 1996;183(3):208216.

    • Search Google Scholar
    • Export Citation
  • 10

    Lesèche G, Penna C, Bouttier S, Femorodistal bypass using cryopreserved venous allografts for limb salvage. Ann Vasc Surg. 1997;11(3):230236.

    • Search Google Scholar
    • Export Citation
  • 11

    Albertini JN, Barral X, Branchereau A, Long-term results of arterial allograft below-knee bypass grafts for limb salvage: a retrospective multicenter study. J Vasc Surg. 2000;31(3):426435.

    • Search Google Scholar
    • Export Citation
  • 12

    Harris L, O’Brien-Irr M, Ricotta JJ. Long-term assessment of cryopreserved vein bypass grafting success. J Vasc Surg. 2001;33(3):528532.

    • Search Google Scholar
    • Export Citation
  • 13

    Farber A, Major K, Wagner WH, Cryopreserved saphenous vein allografts in infrainguinal revascularization: analysis of 240 grafts. J Vasc Surg. 2003;38(1):1521.

    • Search Google Scholar
    • Export Citation
  • 14

    Ochsner JL, Lawson JD, Eskind SJ, Homologous veins as an arterial substitute: long-term results. J Vasc Surg. 1984;1(2):306313.

  • 15

    Gelbfish J, Jacobowitz IJ, Rose DM, Cryopreserved homologous saphenous vein: early and late patency in coronary artery bypass surgical procedures. Ann Thorac Surg. 1986;42(1):7073.

    • Search Google Scholar
    • Export Citation
  • 16

    Sellke FW, Stanford W, Rossi NP. Failure of cryopreserved saphenous vein allografts following coronary artery bypass surgery. J Cardiovasc Surg (Torino). 1991;32(6):820823.

    • Search Google Scholar
    • Export Citation
  • 17

    Laub GW, Muralidharan S, Clancy R, Cryopreserved allograft veins as alternative coronary artery bypass conduits: early phase results. Ann Thorac Surg. 1992;54(5):826831.

    • Search Google Scholar
    • Export Citation
  • 18

    Iaffaldano RA, Lewis BE, Johnson SA, Patency of cryopreserved saphenous vein grafts as conduits for coronary artery bypass surgery. Chest. 1995;108(3):725729.

    • Search Google Scholar
    • Export Citation
  • 19

    Mery FJ, Amin-Hanjani S, Charbel FT. Cerebral revascularization using cadaveric vein grafts. Surg Neurol. 2009;72(4):362368.

  • 20

    Buckley CJ, Abernathy S, Lee SD, Suggested treatment protocol for improving patency of femoral-infrapopliteal cryopreserved saphenous vein allografts. J Vasc Surg. 2000;32(4):731738.

    • Search Google Scholar
    • Export Citation
  • 21

    Charbel FT, Hoffman WE, Misra M, Ostergren L. Ultrasonic perivascular flow probe: technique and application in neurosurgery. Neurol Res. 1998;20(5):439442.

    • Search Google Scholar
    • Export Citation
  • 22

    Zhao M, Charbel FT, Alperin N, Improved phase-contrast flow quantification by three-dimensional vessel localization. Magn Reson Imaging. 2000;18(6):697706.

    • Search Google Scholar
    • Export Citation
  • 23

    Calderon-Arnulphi M, Amin-Hanjani S, Alaraj A, In vivo evaluation of quantitative MR angiography in a canine carotid artery stenosis model. AJNR Am J Neuroradiol. 2011;32(8):15521559.

    • Search Google Scholar
    • Export Citation
  • 24

    Zhao X, Zhao M, Amin-Hanjani S, Wall shear stress in major cerebral arteries as a function of age and gender—a study of 301 healthy volunteers. J Neuroimaging. 2015;25(3):403407.

    • Search Google Scholar
    • Export Citation
  • 25

    Nossek E, Costantino PD, Chalif DJ, Forearm cephalic vein graft for short, “middle”-flow, internal maxillary artery to middle cerebral artery bypass. Oper Neurosurg (Hagerstown). 2016;12(2):99105.

    • Search Google Scholar
    • Export Citation
  • 26

    Nossek E, Costantino PD, Eisenberg M, Internal maxillary artery-middle cerebral artery bypass: infratemporal approach for subcranial-intracranial (SC-IC) bypass. Neurosurgery. 2014;75(1):8795.

    • Search Google Scholar
    • Export Citation
  • 27

    Wang L, Cai L, Lu S, The history and evolution of internal maxillary artery bypass. World Neurosurg. 2018;113:320332.

  • 28

    Başkaya MK, Kiehn MW, Ahmed AS, Alternative vascular graft for extracranial-intracranial bypass surgery: descending branch of the lateral circumflex femoral artery. Neurosurg Focus. 2008;24(2):E8.

    • Search Google Scholar
    • Export Citation
  • 29

    Zenati MA, Bhatt DL, Stock EM. Endoscopic versus open vein-graft harvesting for CABG. N Engl J Med. 2019;380(22):e43.

  • 30

    Rahouma M, Kamel M, Benedetto U, Endoscopic versus open radial artery harvesting: a meta-analysis of randomized controlled and propensity matched studies. J Card Surg. 2017;32(6):334341.

    • Search Google Scholar
    • Export Citation
  • 31

    Bremmer JP, Verweij BH, Klijn CJ, Predictors of patency of excimer laser-assisted nonocclusive extracranial-to-intracranial bypasses. J Neurosurg. 2009;110(5):887895.

    • Search Google Scholar
    • Export Citation
  • 32

    Kleinstreuer C, Hyun S, Buchanan JR Jr, Hemodynamic parameters and early intimal thickening in branching blood vessels. Crit Rev Biomed Eng. 2001;29(1):164.

    • Search Google Scholar
    • Export Citation
  • 33

    Jackson M, Wood NB, Zhao S, Low wall shear stress predicts subsequent development of wall hypertrophy in lower limb bypass grafts. Artery Res. 2009;3(1):3238.

    • Search Google Scholar
    • Export Citation
  • 34

    Ricotta JJ, Collins GJ Jr, Rich NM, Reynolds DG. Failure of immunosuppression to prolong venous allograft survival. Arch Surg. 1980;115(1):99101.

    • Search Google Scholar
    • Export Citation
  • 35

    Miller VM, Bergman RT, Gloviczki P, Brockbank KG. Cryopreserved venous allografts: effects of immunosuppression and antiplatelet therapy on patency and function. J Vasc Surg. 1993;18(2):216226.

    • Search Google Scholar
    • Export Citation
  • 36

    Carpenter JP, Tomaszewski JE. Immunosuppression for human saphenous vein allograft bypass surgery: a prospective randomized trial. J Vasc Surg. 1997;26(1):3242.

    • Search Google Scholar
    • Export Citation
  • 37

    Carpenter JP, Tomaszewski JE. Human saphenous vein allograft bypass grafts: immune response. J Vasc Surg. 1998;27(3):492499.

  • 38

    Powers WJ, Clarke WR, Grubb RL Jr, Extracranial-intracranial bypass surgery for stroke prevention in hemodynamic cerebral ischemia: the Carotid Occlusion Surgery Study randomized trial. JAMA. 2011;306(18):19831992. Published correction in JAMA. 2011;306(24):2672.

    • Search Google Scholar
    • Export Citation
  • 39

    Kallmes DF, Ding YH, Dai D, A new endoluminal, flow-disrupting device for treatment of saccular aneurysms. Stroke. 2007;38(8):23462352.

    • Search Google Scholar
    • Export Citation
  • 40

    Amin-Hanjani S, Du X, Mlinarevich N, The cut flow index: an intraoperative predictor of the success of extracranial-intracranial bypass for occlusive cerebrovascular disease. Neurosurgery. 2005;56(1)(suppl):7585.

    • Search Google Scholar
    • Export Citation
  • 41

    Ashley WW, Amin-Hanjani S, Alaraj A, Flow-assisted surgical cerebral revascularization. Neurosurg Focus. 2008;24(2):E20.

  • 42

    Amin-Hanjani S, Alaraj A, Charbel FT. Flow replacement bypass for aneurysms: decision-making using intraoperative blood flow measurements. Acta Neurochir (Wien). 2010;152(6):10211032.

    • Search Google Scholar
    • Export Citation
  • 43

    Carney AL, Anderson EM. Carotid distal vertebral bypass for carotid occlusion: case report and technique. Clin Electroencephalogr. 1978;9:105109.

    • Search Google Scholar
    • Export Citation
  • 44

    Charbel FT, Alaraj A, Amin-Hanjani S. Extracranial vertebral artery diseases. In: Winn HR, ed. Youmans Neurological Surgery. 6th ed. Vol 4. Elsevier; 2011:36653680.

    • Search Google Scholar
    • Export Citation
  • 45

    Chwajol M, Munson TA, Alaraj A, Extracranial carotid-vertebral bypass for endovascular access to complex posterior circulation aneurysms: a novel management approach. Neurosurgery. 2012;70(5):12961304.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 206 206 206
Full Text Views 20 20 20
PDF Downloads 7 7 7
EPUB Downloads 0 0 0