Relationship between direct cortical stimulation and induced high-frequency activity for language mapping during SEEG recording

View More View Less
  • 1 Department of Neurology, CHU Grenoble Alpes, Grenoble;
  • 2 Université Grenoble Alpes, CNRS, LPNC UMR 5105, Grenoble;
  • 3 Université Grenoble Alpes, Institut des Neurosciences, GIN, Grenoble;
  • 4 Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille;
  • 5 INSERM, U1028, CNRS, UMR5292, Lyon Neuroscience Research Center, Brain Dynamics and Cognition Team, DYCOG, Lyon;
  • 6 Université Lyon 1, Lyon, France; and
  • 7 Institut Universitaire de France
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

OBJECTIVE

The authors assessed the clinical relevance of preoperative task-induced high-frequency activity (HFA) for language mapping in patients with refractory epilepsy during stereoelectroencephalography recording. Although HFA evaluation was described as a putative biomarker of cognition, its clinical relevance for mapping language networks was assessed predominantly by studies using electrocorticography (ECOG).

METHODS

Forty-two patients with epilepsy who underwent intracranial electrode implantation during both task-induced HFA and direct cortical stimulation (DCS) language mapping were evaluated. The spatial and functional relevance of each method in terms of specificity and sensitivity were evaluated.

RESULTS

The results showed that the two methods were able to map classic language regions, and a large and bilateral language network was obtained with induced HFA. At a regional level, differences were observed between methods for parietal and temporal lobes: HFA recruited a larger number of cortical parietal sites, while DCS involved more cortical temporal sites. Importantly, the results showed that HFA predicts language interference induced by DCS with high specificity (92.4%; negative predictive value 95.9%) and very low sensitivity (8.9%; positive predictive value 4.8%).

CONCLUSIONS

DCS language mapping appears to be more appropriate for an extensive temporal mapping than induced HFA mapping. Furthermore, induced HFA should be used as a complement to DCS to preselect the number of stimulated sites during DCS, by omitting those reported as HFA−. This may be a considerable advantage because it allows a reduction in the duration of the stimulation procedure. Several parameters to be used for each method are discussed and the results are interpreted in relation to previous results reported in ECOG studies.

ABBREVIATIONS BA = Brodmann’s area; DCS = direct cortical stimulation; ECOG = electrocorticography; HFA = high-frequency activity; LEC = language experimental condition; MNI = Montreal Neurological Institute; NPV = negative predictive value; PPV = positive predictive value; SEEG = stereoelectroencephalography.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Marcela Perrone-Bertolotti: UFR Sciences de l’Homme et de la Société, Bâtiment Michel Dubois, Grenoble, France. marcela.perrone-bertolotti@univ-grenoble-alpes.fr.

INCLUDE WHEN CITING Published online April 24, 2020; DOI: 10.3171/2020.2.JNS192751.

Disclosures The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

  • 1

    Kahane P, Dubeau F. Intracerebral depth electrodes electroencephalography (stereoencephalography). In: Ebersole JS, ed. Current Practice of Clinical Electroencephalography. 4th ed. Wolters Kluwer; 2014:393441

    • Search Google Scholar
    • Export Citation
  • 2

    Kahane P, Tassi L, Francione S, Electroclinical manifestations elicited by intracerebral electric stimulation “shocks” in temporal lobe epilepsy [in French]. Neurophysiol Clin. 1993;23(4):305326.

    • Search Google Scholar
    • Export Citation
  • 3

    Penfield W, Jasper H: Epilepsy and the Functional Anatomy of the Human Brain. Little Brown & Co; 1954.

  • 4

    Borchers S, Himmelbach M, Logothetis N, Karnath H-O. Direct electrical stimulation of human cortex—the gold standard for mapping brain functions? Nat Rev Neurosci. 2011;13(1):6370.

    • Search Google Scholar
    • Export Citation
  • 5

    Desmurget M, Song Z, Mottolese C, Sirigu A. Re-establishing the merits of electrical brain stimulation. Trends Cogn Sci. 2013;17(9):442449.

    • Search Google Scholar
    • Export Citation
  • 6

    Hamberger MJ. Object naming in epilepsy and epilepsy surgery. Epilepsy Behav. 2015;46:2733.

  • 7

    Vidal JR, Hamame CM, Jerbi K, Localizing cognitive functions in epilepsy with intracranial gamma-band dynamic responses. In: Helmstaedter C, Hermann B, Lassonde M, , eds. Neuropsychology in the Care of People With Epilepsy. John Libbey Eurotext; 2011.

    • Search Google Scholar
    • Export Citation
  • 8

    Lachaux J-P, Axmacher N, Mormann F, High-frequency neural activity and human cognition: past, present and possible future of intracranial EEG research. Prog Neurobiol. 2012;98(3):279301.

    • Search Google Scholar
    • Export Citation
  • 9

    Helmstaedter C. Neuropsychological aspects of epilepsy surgery. Epilepsy Behav. 2004;5(suppl 1):S45S55.

  • 10

    Sherman EMS, Wiebe S, Fay-McClymont TB, Neuropsychological outcomes after epilepsy surgery: systematic review and pooled estimates. Epilepsia. 2011;52(5):857869.

    • Search Google Scholar
    • Export Citation
  • 11

    Juphard A, Vidal JR, Perrone-Bertolotti M, Direct evidence for two different neural mechanisms for reading familiar and unfamiliar words: an intra-cerebral EEG study. Front Hum Neurosci. 2011;5:101.

    • Search Google Scholar
    • Export Citation
  • 12

    Mainy N, Kahane P, Minotti L, Neural correlates of consolidation in working memory. Hum Brain Mapp. 2007;28(3):183193.

  • 13

    Perrone-Bertolotti M, Kujala J, Vidal JR, How silent is silent reading? Intracerebral evidence for top-down activation of temporal voice areas during reading. J Neurosci. 2012;32(49):1755417562.

    • Search Google Scholar
    • Export Citation
  • 14

    Arya R, Horn PS, Crone NE. ECoG high-gamma modulation versus electrical stimulation for presurgical language mapping. Epilepsy Behav. 2018;79:2633.

    • Search Google Scholar
    • Export Citation
  • 15

    Arya R, Ervin B, Dudley J, Electrical stimulation mapping of language with stereo-EEG. Epilepsy Behav. 2019;99:106395.

  • 16

    Kahane P, Minotti L, Hoffmann D, Invasive EEG in the definition of the seizure onset zone: depth electrodes. In: Rosenow F, Lüders HO, eds. Handbook of Clinical Neurophysiology. Elsevier; 2003:109133

    • Search Google Scholar
    • Export Citation
  • 17

    Deman P, Bhattacharjee M, Tadel F, IntrAnat electrodes: a free database and visualization software for intracranial electroencephalographic data processed for case and group studies. Front Neuroinform. 2018;12:40.

    • Search Google Scholar
    • Export Citation
  • 18

    Jerbi K, Ossandón T, Hamamé CM, Task-related gamma-band dynamics from an intracerebral perspective: review and implications for surface EEG and MEG. Hum Brain Mapp. 2009;30(6):17581771.

    • Search Google Scholar
    • Export Citation
  • 19

    Lachaux JP, Rudrauf D, Kahane P. Intracranial EEG and human brain mapping. J Physiol Paris. 2003;97(4-6):613628.

  • 20

    Deloche G, Hannequin D. Test de dénomination orale d’images DO80. ECPA; 1997.

  • 21

    Sinai A, Bowers CW, Crainiceanu CM, Electrocorticographic high gamma activity versus electrical cortical stimulation mapping of naming. Brain. 2005;128(Pt 7):15561570.

    • Search Google Scholar
    • Export Citation
  • 22

    Nathan SS, Sinha SR, Gordon B, Determination of current density distributions generated by electrical stimulation of the human cerebral cortex. Electroencephalogr Clin Neurophysiol. 1993;86(3):183192.

    • Search Google Scholar
    • Export Citation
  • 23

    Tallon-Baudry C, Bertrand O, Delpuech C, Permier J. Oscillatory γ-band (30–70 Hz) activity induced by a visual search task in humans. J Neurosci. 1997;17(2):722734.

    • Search Google Scholar
    • Export Citation
  • 24

    Aguera P-E, Jerbi K, Caclin A, Bertrand O. ELAN: a software package for analysis and visualization of MEG, EEG, and LFP signals. Comput Intell Neurosci. 2011;2011:158970.

    • Search Google Scholar
    • Export Citation
  • 25

    Ossandón T, Jerbi K, Vidal JR, Transient suppression of broadband gamma power in the default-mode network is correlated with task complexity and subject performance. J Neurosci. 2011;31(41):1452114530.

    • Search Google Scholar
    • Export Citation
  • 26

    Le Van Quyen M, Staba R, Bragin A, Large-scale microelectrode recordings of high-frequency gamma oscillations in human cortex during sleep. J Neurosci. 2010;30(23):77707782.

    • Search Google Scholar
    • Export Citation
  • 27

    Cuisenier P, Robin A, Job A-S, Reproductibilité de l’analyse visuelle de cartes d’activité à hautes fréquences (HFA) évaluant les réseaux fonctionnels cognitifs en SEEG. Neurophysiol Clin Neurophysiol. 2016;46:222.

    • Search Google Scholar
    • Export Citation
  • 28

    Divgi DR. Calculation of the tetrachoric correlation coefficient. Psychometrika. 1979;44:169172.

  • 29

    Crone NE, Sinai A, Korzeniewska A. High-frequency gamma oscillations and human brain mapping with electrocorticography. Prog Brain Res. 2006;159:275295.

    • Search Google Scholar
    • Export Citation
  • 30

    Brown EC, Rothermel R, Nishida M, In vivo animation of auditory-language-induced gamma-oscillations in children with intractable focal epilepsy. Neuroimage. 2008;41(3):11201131.

    • Search Google Scholar
    • Export Citation
  • 31

    Blume WT, Jones DC, Pathak P. Properties of after-discharges from cortical electrical stimulation in focal epilepsies. Clin Neurophysiol. 2004;115(4):982989.

    • Search Google Scholar
    • Export Citation
  • 32

    Lesser RP, Lüders H, Klem G, Cortical afterdischarge and functional response thresholds: results of extraoperative testing. Epilepsia. 1984;25(5):615621.

    • Search Google Scholar
    • Export Citation
  • 33

    Ranck JB Jr. Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res. 1975;98(3):417440.

    • Search Google Scholar
    • Export Citation
  • 34

    Arya R, Wilson JA, Fujiwara H, Presurgical language localization with visual naming associated ECoG high- gamma modulation in pediatric drug-resistant epilepsy. Epilepsia. 2017;58(4):663673.

    • Search Google Scholar
    • Export Citation
  • 35

    Babajani-Feremi A, Wheless JW, Papanicolaou JW, Spatial-temporal functional mapping of language at the bedside with electrocorticography. Neurology. 2016;87(24):2604.

    • Search Google Scholar
    • Export Citation
  • 36

    Towle VL, Yoon H-A, Castelle M, ECoG gamma activity during a language task: differentiating expressive and receptive speech areas. Brain. 2008;131(Pt 8):20132027.

    • Search Google Scholar
    • Export Citation
  • 37

    Shannon RV. A model of safe levels for electrical stimulation. IEEE Trans Biomed Eng. 1992;39(4):424426.

  • 38

    Britton JW. Electrical stimulation mapping with stereo-EEG electrodes. J Clin Neurophysiol. 2018;35(2):110114.

  • 39

    Miller KJ, Abel TJ, Hebb AO, Ojemann JG. Rapid online language mapping with electrocorticography. J Neurosurg Pediatr. 2011;7(5):482490.

    • Search Google Scholar
    • Export Citation
  • 40

    Bauer PR, Vansteensel MJ, Bleichner MG, Mismatch between electrocortical stimulation and electrocorticography frequency mapping of language. Brain Stimul. 2013;6(4):524531.

    • Search Google Scholar
    • Export Citation
  • 41

    Mandonnet E, de Witt Hamer P, Duffau H. MRI screening for glioma: a preliminary survey of healthy potential candidates. Acta Neurochir (Wien). 2016;158(5):905906.

    • Search Google Scholar
    • Export Citation
  • 42

    Mandonnet E, Winkler PA, Duffau H. Direct electrical stimulation as an input gate into brain functional networks: principles, advantages and limitations. Acta Neurochir (Wien). 2010;152(2):185193.

    • Search Google Scholar
    • Export Citation
  • 43

    David O, Blauwblomme T, Job A-S, Imaging the seizure onset zone with stereo-electroencephalography. Brain. 2011;134(Pt 10):28982911.

  • 44

    Matsumoto R, Nair DR, LaPresto E, Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain. 2004;127(Pt 10):23162330.

    • Search Google Scholar
    • Export Citation
  • 45

    Baciu M, Perrone-Bertolotti M. What do patients with epilepsy tell us about language dynamics? A review of fMRI studies. Rev Neurosci. 2015;26(3):323341.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 300 300 184
Full Text Views 64 64 48
PDF Downloads 45 45 32
EPUB Downloads 0 0 0