Influence of supramarginal resection on survival outcomes after gross-total resection of IDH–wild-type glioblastoma

View More View Less
  • 1 Departments of Neurosurgery,
  • | 2 Psychology,
  • | 3 Neurology,
  • | 4 Pathology, and
  • | 5 Radiology, Mayo Clinic, Jacksonville, Florida;
  • | 6 Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota; and
  • | 7 Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

OBJECTIVE

The authors’ goal was to use a multicenter, observational cohort study to determine whether supramarginal resection (SMR) of FLAIR-hyperintense tumor beyond the contrast-enhanced (CE) area influences the overall survival (OS) of patients with isocitrate dehydrogenase–wild-type (IDH-wt) glioblastoma after gross-total resection (GTR).

METHODS

The medical records of 888 patients aged ≥ 18 years who underwent resection of GBM between January 2011 and December 2017 were reviewed. Volumetric measurements of the CE tumor and surrounding FLAIR-hyperintense tumor were performed, clinical variables were obtained, and associations with OS were analyzed.

RESULTS

In total, 101 patients with newly diagnosed IDH-wt GBM who underwent GTR of the CE tumor met the inclusion criteria. In multivariate analysis, age ≥ 65 years (HR 1.97; 95% CI 1.01–2.56; p < 0.001) and contact with the lateral ventricles (HR 1.59; 95% CI 1.13–1.78; p = 0.025) were associated with shorter OS, but preoperative Karnofsky Performance Status ≥ 70 (HR 0.47; 95% CI 0.27–0.89; p = 0.006), MGMT promotor methylation (HR 0.63; 95% CI 0.52–0.99; p = 0.044), and increased percentage of SMR (HR 0.99; 95% CI 0.98–0.99; p = 0.02) were associated with longer OS. Finally, 20% SMR was the minimum percentage associated with beneficial OS (HR 0.56; 95% CI 0.35–0.89; p = 0.01), but > 60% SMR had no significant influence (HR 0.74; 95% CI 0.45–1.21; p = 0.234).

CONCLUSIONS

SMR is associated with improved OS in patients with IDH-wt GBM who undergo GTR of CE tumor. At least 20% SMR of the CE tumor was associated with beneficial OS, but greater than 60% SMR had no significant influence on OS.

ABBREVIATIONS

CE = contrast-enhanced; EOR = extent of resection; GBM = glioblastoma; GTR = gross-total resection; IDH = isocitrate dehydrogenase; KPS = Karnofsky Performance Status; LV = lateral ventricle; OS = overall survival; PFS = progression-free survival; SMR = supramarginal resection; wild type = wt.

Supplementary Materials

    • Supplemental Figures and Tables (PDF 2,636 KB)

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    Bush NA, Chang SM, Berger MS. Current and future strategies for treatment of glioma. Neurosurg Rev. 2017;40(1):114.

  • 2

    Marenco-Hillembrand L, Wijesekera O, Suarez-Meade P, et al. Trends in glioblastoma: outcomes over time and type of intervention: a systematic evidence based analysis. J Neurooncol. 2020;147(2):297307.

    • Search Google Scholar
    • Export Citation
  • 3

    Miranda A, Blanco-Prieto M, Sousa J, et al. Breaching barriers in glioblastoma. Part I: Molecular pathways and novel treatment approaches. Int J Pharm. 2017;531(1):372388.

    • Search Google Scholar
    • Export Citation
  • 4

    Chaichana KL, McGirt MJ, Frazier J, et al. Relationship of glioblastoma multiforme to the lateral ventricles predicts survival following tumor resection. J Neurooncol. 2008;89(2):219224.

    • Search Google Scholar
    • Export Citation
  • 5

    Matsuda M, Kohzuki H, Ishikawa E, et al. Prognostic analysis of patients who underwent gross total resection of newly diagnosed glioblastoma. J Clin Neurosci. 2018;50:172176.

    • Search Google Scholar
    • Export Citation
  • 6

    Eseonu CI, Rincon-Torroella J, ReFaey K, et al. Awake craniotomy vs craniotomy under general anesthesia for perirolandic gliomas: evaluating perioperative complications and extent of resection. Neurosurgery. 2017;81(3):481489.

    • Search Google Scholar
    • Export Citation
  • 7

    Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):9971003.

    • Search Google Scholar
    • Export Citation
  • 8

    Almeida JP, Chaichana KL, Rincon-Torroella J, Quinones-Hinojosa A. The value of extent of resection of glioblastomas: clinical evidence and current approach. Curr Neurol Neurosci Rep. 2015;15(2):517.

    • Search Google Scholar
    • Export Citation
  • 9

    Certo F, Stummer W, Farah JO, et al. Supramarginal resection of glioblastoma: 5-ALA fluorescence, combined intraoperative strategies and correlation with survival. J Neurosurg Sci. 2019;63(6):625632.

    • Search Google Scholar
    • Export Citation
  • 10

    Sanai N, Polley MY, McDermott MW, et al. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115(1):38.

  • 11

    Chaichana KL, Cabrera-Aldana EE, Jusue-Torres I, et al. When gross total resection of a glioblastoma is possible, how much resection should be achieved? World Neurosurg. 2014;82(1-2):e257e265.

    • Search Google Scholar
    • Export Citation
  • 12

    Lara-Velazquez M, Al-Kharboosh R, Jeanneret S, et al. Advances in brain tumor surgery for glioblastoma in adults. Brain Sci. 2017;7(12):E166.

  • 13

    de Leeuw CN, Vogelbaum MA. Supratotal resection in glioma: a systematic review. Neuro Oncol. 2019;21(2):179188.

  • 14

    Mampre D, Ehresman J, Pinilla-Monsalve G, et al. Extending the resection beyond the contrast-enhancement for glioblastoma: feasibility, efficacy, and outcomes. Br J Neurosurg. 2018;32(5):528535.

    • Search Google Scholar
    • Export Citation
  • 15

    Altieri R, Melcarne A, Soffietti R, et al. Supratotal resection of glioblastoma: is less more? Surg Technol Int. 2019;35:432440.

  • 16

    Li YM, Suki D, Hess K, Sawaya R. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection? J Neurosurg. 2016;124(4):977988.

    • Search Google Scholar
    • Export Citation
  • 17

    Huang J, Yu J, Tu L, et al. Isocitrate dehydrogenase mutations in glioma: from basic discovery to therapeutics development. Front Oncol. 2019;9:506.

    • Search Google Scholar
    • Export Citation
  • 18

    Beiko J, Suki D, Hess KR, et al. IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro Oncol. 2014;16(1):8191.

    • Search Google Scholar
    • Export Citation
  • 19

    Molinaro AM, Hervey-Jumper S, Morshed RA, et al. Association of maximal extent of resection of contrast-enhanced and non-contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma. JAMA Oncol. 2020;6(4):495503.

    • Search Google Scholar
    • Export Citation
  • 20

    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. World Health Organization Histological Classification of Tumours of the Central Nervous System. International Agency for Research on Cancer; 2016.

    • Search Google Scholar
    • Export Citation
  • 21

    Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987996.

    • Search Google Scholar
    • Export Citation
  • 22

    Shah AH, Mahavadi A, Di L, et al. Survival benefit of lobectomy for glioblastoma: moving towards radical supramaximal resection. J Neurooncol. 2020;148(3):501508.

    • Search Google Scholar
    • Export Citation
  • 23

    Chen L, Guerrero-Cazares H, Ye X, et al. Increased subventricular zone radiation dose correlates with survival in glioblastoma patients after gross total resection. Int J Radiat Oncol Biol Phys. 2013;86(4):616622.

    • Search Google Scholar
    • Export Citation
  • 24

    Hadjipanayis CG, Widhalm G, Stummer W. What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas? Neurosurgery. 2015;77(5):663673.

    • Search Google Scholar
    • Export Citation
  • 25

    Pino MA, Imperato A, Musca I, et al. New hope in brain glioma surgery: the role of intraoperative ultrasound. A Review. Brain Sci. 2018;8(11):202.

    • Search Google Scholar
    • Export Citation
  • 26

    Haj A, Doenitz C, Schebesch KM, et al. Extent of resection in newly diagnosed glioblastoma: impact of a specialized neuro-oncology care center. Brain Sci. 2017;8(1):5.

    • Search Google Scholar
    • Export Citation
  • 27

    Molinaro AM, Taylor JW, Wiencke JK, Wrensch MR. Genetic and molecular epidemiology of adult diffuse glioma. Nat Rev Neurol. 2019;15(7):405417.

    • Search Google Scholar
    • Export Citation
  • 28

    Mistry AM, Hale AT, Chambless LB, et al. Influence of glioblastoma contact with the lateral ventricle on survival: a meta-analysis. J Neurooncol. 2017;131(1):125133.

    • Search Google Scholar
    • Export Citation
  • 29

    Zhang K, Wang XQ, Zhou B, Zhang L. The prognostic value of MGMT promoter methylation in Glioblastoma multiforme: a meta-analysis. Fam Cancer. 2013;12(3):449458.

    • Search Google Scholar
    • Export Citation
  • 30

    Kim Y. Regulation of cell proliferation and migration in glioblastoma: new therapeutic approach. Front Oncol. 2013;3:53.

  • 31

    Abbadi S, Rodarte JJ, Abutaleb A, et al. Glucose-6-phosphatase is a key metabolic regulator of glioblastoma invasion. Mol Cancer Res. 2014;12(11):15471559.

    • Search Google Scholar
    • Export Citation
  • 32

    Schiapparelli P, Guerrero-Cazares H, Magaña-Maldonado R, et al. NKCC1 regulates migration ability of glioblastoma cells by modulation of actin dynamics and interacting with Cofilin. EBioMedicine. 2017;21:94103.

    • Search Google Scholar
    • Export Citation
  • 33

    Lara-Velazquez M, Al-Kharboosh R, Prieto L, et al. The study of brain tumor stem cell migration. Methods Mol Biol. 2019;1869:93104.

  • 34

    Al-Kharboosh R, Lara-Velazquez M, Prieto L, et al. The study of brain tumor stem cell invasion. Methods Mol Biol. 2019;1869:105116.

  • 35

    Duffau H. Long-term outcomes after supratotal resection of diffuse low-grade gliomas: a consecutive series with 11-year follow-up. Acta Neurochir (Wien). 2016;158(1):5158.

    • Search Google Scholar
    • Export Citation
  • 36

    Chaichana KL, Jusue-Torres I, Navarro-Ramirez R, et al. Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma. Neuro Oncol. 2014;16(1):113122.

    • Search Google Scholar
    • Export Citation
  • 37

    Chang PD, Malone HR, Bowden SG, et al. A multiparametric model for mapping cellularity in glioblastoma using radiographically localized biopsies. AJNR Am J Neuroradiol. 2017;38(5):890898.

    • Search Google Scholar
    • Export Citation
  • 38

    Domingo RA, Vivas-Buitrago T, Sabsevitz DS, et al. Awake craniotomy with cortical and subcortical speech mapping for supramarginal cavernoma resection. World Neurosurg. 2020;141:260.

    • Search Google Scholar
    • Export Citation
  • 39

    Eseonu CI, Eguia F, Garcia O, et al. Comparative analysis of monotherapy versus duotherapy antiseizure drug management for postoperative seizure control in patients undergoing an awake craniotomy. J Neurosurg. 2018;128(6):16611667.

    • Search Google Scholar
    • Export Citation
  • 40

    Eseonu CI, Rincon-Torroella J, ReFaey K, Quiñones-Hinojosa A. The cost of brain surgery: awake vs asleep craniotomy for perirolandic region tumors. Neurosurgery. 2017;81(2):307314.

    • Search Google Scholar
    • Export Citation
  • 41

    Feyissa AM, Worrell GA, Tatum WO, et al. High-frequency oscillations in awake patients undergoing brain tumor-related epilepsy surgery. Neurology. 2018;90(13):e1119e1125.

    • Search Google Scholar
    • Export Citation
  • 42

    ReFaey K, Chaichana KL, Feyissa AM, et al. A 360° electronic device for recording high-resolution intraoperative electrocorticography of the brain during awake craniotomy. J Neurosurg. 2020;133(2):443450.

    • Search Google Scholar
    • Export Citation
  • 43

    ReFaey K, Tripathi S, Bhargav AG, et al. Potential differences between monolingual and bilingual patients in approach and outcome after awake brain surgery. J Neurooncol. 2020;148(3):587598.

    • Search Google Scholar
    • Export Citation
  • 44

    Suarez-Meade P, Marenco-Hillembrand L, Prevatt C, et al. Awake vs. asleep motor mapping for glioma resection: a systematic review and meta-analysis. Acta Neurochir (Wien). 2020;162(7):17091720.

    • Search Google Scholar
    • Export Citation
  • 45

    McGirt MJ, Mukherjee D, Chaichana KL, et al. Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery. 2009;65(3):463470.

    • Search Google Scholar
    • Export Citation
  • 46

    Rahman M, Abbatematteo J, De Leo EK, et al. The effects of new or worsened postoperative neurological deficits on survival of patients with glioblastoma. J Neurosurg. 2017;127(1):123131.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1432 1432 140
Full Text Views 402 402 41
PDF Downloads 442 442 62
EPUB Downloads 0 0 0