Influence of supramarginal resection on survival outcomes after gross-total resection of IDH–wild-type glioblastoma

View More View Less
  • 1 Departments of Neurosurgery,
  • | 2 Psychology,
  • | 3 Neurology,
  • | 4 Pathology, and
  • | 5 Radiology, Mayo Clinic, Jacksonville, Florida;
  • | 6 Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota; and
  • | 7 Department of Neurosurgery, Mayo Clinic, Phoenix, Arizona
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00
Print or Print + Online

OBJECTIVE

The authors’ goal was to use a multicenter, observational cohort study to determine whether supramarginal resection (SMR) of FLAIR-hyperintense tumor beyond the contrast-enhanced (CE) area influences the overall survival (OS) of patients with isocitrate dehydrogenase–wild-type (IDH-wt) glioblastoma after gross-total resection (GTR).

METHODS

The medical records of 888 patients aged ≥ 18 years who underwent resection of GBM between January 2011 and December 2017 were reviewed. Volumetric measurements of the CE tumor and surrounding FLAIR-hyperintense tumor were performed, clinical variables were obtained, and associations with OS were analyzed.

RESULTS

In total, 101 patients with newly diagnosed IDH-wt GBM who underwent GTR of the CE tumor met the inclusion criteria. In multivariate analysis, age ≥ 65 years (HR 1.97; 95% CI 1.01–2.56; p < 0.001) and contact with the lateral ventricles (HR 1.59; 95% CI 1.13–1.78; p = 0.025) were associated with shorter OS, but preoperative Karnofsky Performance Status ≥ 70 (HR 0.47; 95% CI 0.27–0.89; p = 0.006), MGMT promotor methylation (HR 0.63; 95% CI 0.52–0.99; p = 0.044), and increased percentage of SMR (HR 0.99; 95% CI 0.98–0.99; p = 0.02) were associated with longer OS. Finally, 20% SMR was the minimum percentage associated with beneficial OS (HR 0.56; 95% CI 0.35–0.89; p = 0.01), but > 60% SMR had no significant influence (HR 0.74; 95% CI 0.45–1.21; p = 0.234).

CONCLUSIONS

SMR is associated with improved OS in patients with IDH-wt GBM who undergo GTR of CE tumor. At least 20% SMR of the CE tumor was associated with beneficial OS, but greater than 60% SMR had no significant influence on OS.

ABBREVIATIONS

CE = contrast-enhanced; EOR = extent of resection; GBM = glioblastoma; GTR = gross-total resection; IDH = isocitrate dehydrogenase; KPS = Karnofsky Performance Status; LV = lateral ventricle; OS = overall survival; PFS = progression-free survival; SMR = supramarginal resection; wild type = wt.

Supplementary Materials

    • Supplemental Figures and Tables (PDF 2,636 KB)

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $505.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $600.00

Contributor Notes

Correspondence Alfredo Quinones-Hinojosa: Mayo Clinic, Jacksonville, FL. quinones@mayo.edu.

INCLUDE WHEN CITING Published online June 4, 2021; DOI: 10.3171/2020.10.JNS203366.

T.V.B. and R.A.D. contributed equally to this work and share first authorship.

Disclosures The authors report no conflict of interest concerning the materials or methods used in this study or the findings specified in this paper.

  • 1

    Bush NA, Chang SM, Berger MS. Current and future strategies for treatment of glioma. Neurosurg Rev. 2017;40(1):114.

  • 2

    Marenco-Hillembrand L, Wijesekera O, Suarez-Meade P, et al. Trends in glioblastoma: outcomes over time and type of intervention: a systematic evidence based analysis. J Neurooncol. 2020;147(2):297307.

    • Search Google Scholar
    • Export Citation
  • 3

    Miranda A, Blanco-Prieto M, Sousa J, et al. Breaching barriers in glioblastoma. Part I: Molecular pathways and novel treatment approaches. Int J Pharm. 2017;531(1):372388.

    • Search Google Scholar
    • Export Citation
  • 4

    Chaichana KL, McGirt MJ, Frazier J, et al. Relationship of glioblastoma multiforme to the lateral ventricles predicts survival following tumor resection. J Neurooncol. 2008;89(2):219224.

    • Search Google Scholar
    • Export Citation
  • 5

    Matsuda M, Kohzuki H, Ishikawa E, et al. Prognostic analysis of patients who underwent gross total resection of newly diagnosed glioblastoma. J Clin Neurosci. 2018;50:172176.

    • Search Google Scholar
    • Export Citation
  • 6

    Eseonu CI, Rincon-Torroella J, ReFaey K, et al. Awake craniotomy vs craniotomy under general anesthesia for perirolandic gliomas: evaluating perioperative complications and extent of resection. Neurosurgery. 2017;81(3):481489.

    • Search Google Scholar
    • Export Citation
  • 7

    Hegi ME, Diserens AC, Gorlia T, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):9971003.

    • Search Google Scholar
    • Export Citation
  • 8

    Almeida JP, Chaichana KL, Rincon-Torroella J, Quinones-Hinojosa A. The value of extent of resection of glioblastomas: clinical evidence and current approach. Curr Neurol Neurosci Rep. 2015;15(2):517.

    • Search Google Scholar
    • Export Citation
  • 9

    Certo F, Stummer W, Farah JO, et al. Supramarginal resection of glioblastoma: 5-ALA fluorescence, combined intraoperative strategies and correlation with survival. J Neurosurg Sci. 2019;63(6):625632.

    • Search Google Scholar
    • Export Citation
  • 10

    Sanai N, Polley MY, McDermott MW, et al. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115(1):38.

  • 11

    Chaichana KL, Cabrera-Aldana EE, Jusue-Torres I, et al. When gross total resection of a glioblastoma is possible, how much resection should be achieved? World Neurosurg. 2014;82(1-2):e257e265.

    • Search Google Scholar
    • Export Citation
  • 12

    Lara-Velazquez M, Al-Kharboosh R, Jeanneret S, et al. Advances in brain tumor surgery for glioblastoma in adults. Brain Sci. 2017;7(12):E166.

  • 13

    de Leeuw CN, Vogelbaum MA. Supratotal resection in glioma: a systematic review. Neuro Oncol. 2019;21(2):179188.

  • 14

    Mampre D, Ehresman J, Pinilla-Monsalve G, et al. Extending the resection beyond the contrast-enhancement for glioblastoma: feasibility, efficacy, and outcomes. Br J Neurosurg. 2018;32(5):528535.

    • Search Google Scholar
    • Export Citation
  • 15

    Altieri R, Melcarne A, Soffietti R, et al. Supratotal resection of glioblastoma: is less more? Surg Technol Int. 2019;35:432440.

  • 16

    Li YM, Suki D, Hess K, Sawaya R. The influence of maximum safe resection of glioblastoma on survival in 1229 patients: can we do better than gross-total resection? J Neurosurg. 2016;124(4):977988.

    • Search Google Scholar
    • Export Citation
  • 17

    Huang J, Yu J, Tu L, et al. Isocitrate dehydrogenase mutations in glioma: from basic discovery to therapeutics development. Front Oncol. 2019;9:506.

    • Search Google Scholar
    • Export Citation
  • 18

    Beiko J, Suki D, Hess KR, et al. IDH1 mutant malignant astrocytomas are more amenable to surgical resection and have a survival benefit associated with maximal surgical resection. Neuro Oncol. 2014;16(1):8191.

    • Search Google Scholar
    • Export Citation
  • 19

    Molinaro AM, Hervey-Jumper S, Morshed RA, et al. Association of maximal extent of resection of contrast-enhanced and non-contrast-enhanced tumor with survival within molecular subgroups of patients with newly diagnosed glioblastoma. JAMA Oncol. 2020;6(4):495503.

    • Search Google Scholar
    • Export Citation
  • 20

    Louis DN, Ohgaki H, Wiestler OD, Cavenee WK. World Health Organization Histological Classification of Tumours of the Central Nervous System. International Agency for Research on Cancer; 2016.

    • Search Google Scholar
    • Export Citation
  • 21

    Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987996.

    • Search Google Scholar
    • Export Citation
  • 22

    Shah AH, Mahavadi A, Di L, et al. Survival benefit of lobectomy for glioblastoma: moving towards radical supramaximal resection. J Neurooncol. 2020;148(3):501508.

    • Search Google Scholar
    • Export Citation
  • 23

    Chen L, Guerrero-Cazares H, Ye X, et al. Increased subventricular zone radiation dose correlates with survival in glioblastoma patients after gross total resection. Int J Radiat Oncol Biol Phys. 2013;86(4):616622.

    • Search Google Scholar
    • Export Citation
  • 24

    Hadjipanayis CG, Widhalm G, Stummer W. What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas? Neurosurgery. 2015;77(5):663673.

    • Search Google Scholar
    • Export Citation
  • 25

    Pino MA, Imperato A, Musca I, et al. New hope in brain glioma surgery: the role of intraoperative ultrasound. A Review. Brain Sci. 2018;8(11):202.

    • Search Google Scholar
    • Export Citation
  • 26

    Haj A, Doenitz C, Schebesch KM, et al. Extent of resection in newly diagnosed glioblastoma: impact of a specialized neuro-oncology care center. Brain Sci. 2017;8(1):5.

    • Search Google Scholar
    • Export Citation
  • 27

    Molinaro AM, Taylor JW, Wiencke JK, Wrensch MR. Genetic and molecular epidemiology of adult diffuse glioma. Nat Rev Neurol. 2019;15(7):405417.

    • Search Google Scholar
    • Export Citation
  • 28

    Mistry AM, Hale AT, Chambless LB, et al. Influence of glioblastoma contact with the lateral ventricle on survival: a meta-analysis. J Neurooncol. 2017;131(1):125133.

    • Search Google Scholar
    • Export Citation
  • 29

    Zhang K, Wang XQ, Zhou B, Zhang L. The prognostic value of MGMT promoter methylation in Glioblastoma multiforme: a meta-analysis. Fam Cancer. 2013;12(3):449458.

    • Search Google Scholar
    • Export Citation
  • 30

    Kim Y. Regulation of cell proliferation and migration in glioblastoma: new therapeutic approach. Front Oncol. 2013;3:53.

  • 31

    Abbadi S, Rodarte JJ, Abutaleb A, et al. Glucose-6-phosphatase is a key metabolic regulator of glioblastoma invasion. Mol Cancer Res. 2014;12(11):15471559.

    • Search Google Scholar
    • Export Citation
  • 32

    Schiapparelli P, Guerrero-Cazares H, Magaña-Maldonado R, et al. NKCC1 regulates migration ability of glioblastoma cells by modulation of actin dynamics and interacting with Cofilin. EBioMedicine. 2017;21:94103.

    • Search Google Scholar
    • Export Citation
  • 33

    Lara-Velazquez M, Al-Kharboosh R, Prieto L, et al. The study of brain tumor stem cell migration. Methods Mol Biol. 2019;1869:93104.

  • 34

    Al-Kharboosh R, Lara-Velazquez M, Prieto L, et al. The study of brain tumor stem cell invasion. Methods Mol Biol. 2019;1869:105116.

  • 35

    Duffau H. Long-term outcomes after supratotal resection of diffuse low-grade gliomas: a consecutive series with 11-year follow-up. Acta Neurochir (Wien). 2016;158(1):5158.

    • Search Google Scholar
    • Export Citation
  • 36

    Chaichana KL, Jusue-Torres I, Navarro-Ramirez R, et al. Establishing percent resection and residual volume thresholds affecting survival and recurrence for patients with newly diagnosed intracranial glioblastoma. Neuro Oncol. 2014;16(1):113122.

    • Search Google Scholar
    • Export Citation
  • 37

    Chang PD, Malone HR, Bowden SG, et al. A multiparametric model for mapping cellularity in glioblastoma using radiographically localized biopsies. AJNR Am J Neuroradiol. 2017;38(5):890898.

    • Search Google Scholar
    • Export Citation
  • 38

    Domingo RA, Vivas-Buitrago T, Sabsevitz DS, et al. Awake craniotomy with cortical and subcortical speech mapping for supramarginal cavernoma resection. World Neurosurg. 2020;141:260.

    • Search Google Scholar
    • Export Citation
  • 39

    Eseonu CI, Eguia F, Garcia O, et al. Comparative analysis of monotherapy versus duotherapy antiseizure drug management for postoperative seizure control in patients undergoing an awake craniotomy. J Neurosurg. 2018;128(6):16611667.

    • Search Google Scholar
    • Export Citation
  • 40

    Eseonu CI, Rincon-Torroella J, ReFaey K, Quiñones-Hinojosa A. The cost of brain surgery: awake vs asleep craniotomy for perirolandic region tumors. Neurosurgery. 2017;81(2):307314.

    • Search Google Scholar
    • Export Citation
  • 41

    Feyissa AM, Worrell GA, Tatum WO, et al. High-frequency oscillations in awake patients undergoing brain tumor-related epilepsy surgery. Neurology. 2018;90(13):e1119e1125.

    • Search Google Scholar
    • Export Citation
  • 42

    ReFaey K, Chaichana KL, Feyissa AM, et al. A 360° electronic device for recording high-resolution intraoperative electrocorticography of the brain during awake craniotomy. J Neurosurg. 2020;133(2):443450.

    • Search Google Scholar
    • Export Citation
  • 43

    ReFaey K, Tripathi S, Bhargav AG, et al. Potential differences between monolingual and bilingual patients in approach and outcome after awake brain surgery. J Neurooncol. 2020;148(3):587598.

    • Search Google Scholar
    • Export Citation
  • 44

    Suarez-Meade P, Marenco-Hillembrand L, Prevatt C, et al. Awake vs. asleep motor mapping for glioma resection: a systematic review and meta-analysis. Acta Neurochir (Wien). 2020;162(7):17091720.

    • Search Google Scholar
    • Export Citation
  • 45

    McGirt MJ, Mukherjee D, Chaichana KL, et al. Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery. 2009;65(3):463470.

    • Search Google Scholar
    • Export Citation
  • 46

    Rahman M, Abbatematteo J, De Leo EK, et al. The effects of new or worsened postoperative neurological deficits on survival of patients with glioblastoma. J Neurosurg. 2017;127(1):123131.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 422 422 422
Full Text Views 104 104 104
PDF Downloads 116 116 116
EPUB Downloads 0 0 0