Localization of clinically effective stimulating electrodes in the human subthalamic nucleus on magnetic resonance imaging

Restricted access

Object. The authors sought to determine the location of deep brain stimulation (DBS) electrodes that were most effective in treating Parkinson disease (PD).

Methods. Fifty-four DBS electrodes were localized in and adjacent to the subthalamic nucleus (STN) postoperatively by using magnetic resonance (MR) imaging in a series of 29 patients in whom electrodes were implanted for the treatment of medically refractory PD, and for whom quantitative clinical assessments were available both pre- and postoperatively. A novel MR imaging sequence was developed that optimized visualization of the STN. The coordinates of the tips of these electrodes were calculated three dimensionally and the results were normalized and corrected for individual differences by using intraoperative neurophysiological data (mean 5.13 mm caudal to the midcommissural point [MCP], 8.46 mm inferior to the anterior commissure—posterior commissure [AC—PC], and 10.2 mm lateral to the midline).

Despite reported concerns about distortion on the MR image, reconstructions provided consistent data for the localization of electrodes. The neurosurgical procedures used, which were guided by combined neuroimaging and neurophysiological methods, resulted in the consistent placement of DBS electrodes in the subthalamus and mesencephalon such that the electrode contacts passed through the STN and dorsally adjacent fields of Forel (FF) and zona incerta (ZI). The mean location of the clinically effective contacts was in the anterodorsal STN (mean 1.62 mm posterior to the MCP, 2.47 mm inferior to the AC—PC, and 11.72 mm lateral to the midline). Clinically effective stimulation was most commonly directed at the anterodorsal STN, with the current spreading into the dorsally adjacent FF and ZI.

Conclusions. The anatomical localization of clinically effective electrode contacts provided in this study yields useful information for the postoperative programming of DBS electrodes.

Article Information

Address reprint requests to: Jean A. Saint-Cyr, Ph.D., Morton and Gloria Shulman Centre for Movement Disorders, Toronto Western Hospital, MP 11–304, 399 Bathurst Street, Toronto, Ontario, M5T 2S8, Canada. email: jean@uhnres.utoronto.ca.

© AANS, except where prohibited by US copyright law.

Headings

Figures

  • View in gallery

    High-resolution MR images. Left: Visualization of the STN with the stereotactic frame in place. The red nucleus (RN), STN, and SN are all clearly visible on MR images (arrows). The bright dots surrounding the skull are the fiducial markers used to determine target coordinates relative to the Elekta stereotactic frame. Right: Visualization of the DBS electrodes postoperatively. The red nucleus, STN, and SN are still visible. The black DBS profiles are punctuated with bright spots, because of the presence of the four metal contacts in the electrodes. The tip of the left DBS electrode is identified by the arrow.

  • View in gallery

    Boxplots showing motor scores before and after DBS in patients with PD. The median is indicated by the horizontal line inside the box, and the box and whiskers represent 1 SD and the 95% confidence interval (CI), respectively. The points outside the whiskers are the outliers. Upper: Combined clinical rating from the motor section of the UPDRS for symptom reduction contralateral to the right DBS electrode. Center: Combined clinical rating from the motor section of the UPDRS for symptom reduction contralateral to the left DBS electrode. Lower: Combined UPDRS motor ratings of symptom reduction after STN DBS on the right and left sides. **p < 0.01, ***p < 0.0001.

  • View in gallery

    Left: Sagittal plot of the STN corresponding to the Schaltenbrand and Wahren atlas plate, 12 mm from the midline, with all DBS electrode tips and clinically effective contacts plotted. Anterior is to the left side of both panels. Right: Data from the left panel represented as mean locations of DBS electrode tips and clinically effective contacts, with 95% confidence interval (CI) indicated by horizontal and vertical lines crossing at the data points.

  • View in gallery

    Upper: Data represented as in Fig. 3 left but plotted in the coronal plane. The upper (dorsal) and lower (ventral) limits of the STN are indicated. Lower: Data from upper panel represented as mean locations of DBS electrode tips and clinically effective contacts, with 95% CI indicated.

  • View in gallery

    Left: Data represented as in Fig. 3 left but plotted in the axial plane. The anterior and posterior limits of the STN are indicated. Right: Data from the left panel represented as mean locations of DBS electrode tips and clinically effective contacts, with 95% CI indicated.

  • View in gallery

    Clinically effective contacts plotted in all three planes (sagittal in upper panel, coronal in center panel, and axial in lower panel) after monopolar, bipolar, or tripolar stimulation, with a 3-mm radius sphere of current spread from the geometric mean location indicated by the large circles.

  • View in gallery

    Plot showing the distribution of responsive units (cells responsive to active or passive movement) with the geometric mean location (unit average) compared with the mean DBS clinically effective contact location (DBS average), with 95% CI indicated.

References

  • 1.

    Abosch AHutchison WDSaint-Cyr JAet al: Movement-related neurons of the subthalamic nucleus in patients with Parkinson disease. J Neurosurg 97:116711722002Abosch A Hutchison WD Saint-Cyr JA et al: Movement-related neurons of the subthalamic nucleus in patients with Parkinson disease. J Neurosurg 97:1167–1172 2002

    • Search Google Scholar
    • Export Citation
  • 2.

    Absher JRVogt BAClark DGet al: Hypersexuality and hemiballism due to subthalamic infarction. Neuropsychiatry Neuropsychol Behav Neurol 13:2202292000Absher JR Vogt BA Clark DG et al: Hypersexuality and hemiballism due to subthalamic infarction. Neuropsychiatry Neuropsychol Behav Neurol 13:220–229 2000

    • Search Google Scholar
    • Export Citation
  • 3.

    Alexander E IIIKooy HMvan Herk Met al: Magnetic resonance image-directed stereotactic neurosurgery: use of image fusion with computerized tomography to enhance spatial accuracy. J Neurosurg 83:2712761995Alexander E III Kooy HM van Herk M et al: Magnetic resonance image-directed stereotactic neurosurgery: use of image fusion with computerized tomography to enhance spatial accuracy. J Neurosurg 83:271–276 1995

    • Search Google Scholar
    • Export Citation
  • 4.

    Alvarez LMacias RGuridi Jet al: Dorsal subthalamotomy for Parkinson's disease. Mov Disord 16:72782001Alvarez L Macias R Guridi J et al: Dorsal subthalamotomy for Parkinson's disease. Mov Disord 16:72–78 2001

    • Search Google Scholar
    • Export Citation
  • 5.

    Ando NIzawa YShinoda Y: Relative contributions of thalamic reticular nucleus neurons and intrinsic interneurons to inhibition of thalamic neurons projecting to the motor cortex. J Neurophysiol 73:247024851995Ando N Izawa Y Shinoda Y: Relative contributions of thalamic reticular nucleus neurons and intrinsic interneurons to inhibition of thalamic neurons projecting to the motor cortex. J Neurophysiol 73:2470–2485 1995

    • Search Google Scholar
    • Export Citation
  • 6.

    Ardouin CPillon BPeiffer Eet al: Bilateral subthalamic or pallidal stimulation for Parkinson's disease affects neither memory nor executive functions: a consecutive series of 62 patients. Ann Neurol 46:2172231999Ardouin C Pillon B Peiffer E et al: Bilateral subthalamic or pallidal stimulation for Parkinson's disease affects neither memory nor executive functions: a consecutive series of 62 patients. Ann Neurol 46:217–223 1999

    • Search Google Scholar
    • Export Citation
  • 7.

    Ashby P: What does stimulation in the brain actually do? in Lozano AM (ed): Progress in Neurological Surgery. Vol 15. Movement Disorder Surgery. Basel: Karger2000 pp 236245Ashby P: What does stimulation in the brain actually do? in Lozano AM (ed): Progress in Neurological Surgery. Vol 15. Movement Disorder Surgery. Basel: Karger 2000 pp 236–245

    • Search Google Scholar
    • Export Citation
  • 8.

    Ashby PRothwell JC: Neurophysiologic aspects of deep brain stimulation. Neurology 55 (Suppl 6):S17S202000Ashby P Rothwell JC: Neurophysiologic aspects of deep brain stimulation. Neurology 55 (Suppl 6):S17–S20 2000

    • Search Google Scholar
    • Export Citation
  • 9.

    Aziz TZPeggs DAgarwal Eet al: Subthalamic nucleotomy alleviates parkinsonism in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-exposed primate. Br J Neurosurg 6:5755821992Aziz TZ Peggs D Agarwal E et al: Subthalamic nucleotomy alleviates parkinsonism in the 1-methyl-4-phenyl-1236-tetrahydropyridine (MPTP)-exposed primate. Br J Neurosurg 6:575–582 1992

    • Search Google Scholar
    • Export Citation
  • 10.

    Baron MSSidibe MDeLong MRet al: Course of motor and associative pallidothalamic projections in monkeys. J Comp Neurol 429:4905012001Baron MS Sidibe M DeLong MR et al: Course of motor and associative pallidothalamic projections in monkeys. J Comp Neurol 429:490–501 2001

    • Search Google Scholar
    • Export Citation
  • 11.

    Baron MSWichmann TMa Det al: Effects of transient focal inactivation of the basal ganglia in parkinsonian primates. J Neurosci 22:5925992002Baron MS Wichmann T Ma D et al: Effects of transient focal inactivation of the basal ganglia in parkinsonian primates. J Neurosci 22:592–599 2002

    • Search Google Scholar
    • Export Citation
  • 12.

    Bejjani BPDamier PArnulf Iet al: Transient acute depression induced by high-frequency deep-brain stimulation. N Engl J Med 340:147614801999Bejjani BP Damier P Arnulf I et al: Transient acute depression induced by high-frequency deep-brain stimulation. N Engl J Med 340:1476–1480 1999

    • Search Google Scholar
    • Export Citation
  • 13.

    Bejjani BPDormont DPidoux Bet al: Bilateral subthalamic stimulation for Parkinson's disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg 92:6156252000Bejjani BP Dormont D Pidoux B et al: Bilateral subthalamic stimulation for Parkinson's disease by using three-dimensional stereotactic magnetic resonance imaging and electrophysiological guidance. J Neurosurg 92:615–625 2000

    • Search Google Scholar
    • Export Citation
  • 14.

    Benabid ALKoudsie ABenazzouz Aet al: Subthalamic nucleus deep brain stimulation in Lozano AM (ed): Progress in Neurological Surgery. Vol 15. Movement Disorder Surgery. Basel: Karger2000 pp 196226Benabid AL Koudsie A Benazzouz A et al: Subthalamic nucleus deep brain stimulation in Lozano AM (ed): Progress in Neurological Surgery. Vol 15. Movement Disorder Surgery. Basel: Karger 2000 pp 196–226

    • Search Google Scholar
    • Export Citation
  • 15.

    Benabid ALPollak PGao Det al: Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84:2032141996Benabid AL Pollak P Gao D et al: Chronic electrical stimulation of the ventralis intermedius nucleus of the thalamus as a treatment of movement disorders. J Neurosurg 84:203–214 1996

    • Search Google Scholar
    • Export Citation
  • 16.

    Benazzouz AGao DMNi ZGet al: Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neuroscience 99:2892952000Benazzouz A Gao DM Ni ZG et al: Effect of high-frequency stimulation of the subthalamic nucleus on the neuronal activities of the substantia nigra pars reticulata and ventrolateral nucleus of the thalamus in the rat. Neuroscience 99:289–295 2000

    • Search Google Scholar
    • Export Citation
  • 17.

    Benazzouz AHallett M: Mechanism of action of deep brain stimulation. Neurology 55 (Suppl 6):S13S162000Benazzouz A Hallett M: Mechanism of action of deep brain stimulation. Neurology 55 (Suppl 6):S13–S16 2000

    • Search Google Scholar
    • Export Citation
  • 18.

    Bergman HWichmann TDeLong MR: Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:143614381990Bergman H Wichmann T DeLong MR: Reversal of experimental parkinsonism by lesions of the subthalamic nucleus. Science 249:1436–1438 1990

    • Search Google Scholar
    • Export Citation
  • 19.

    Beurrier CBioulacBAudin Jet al: High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85:135113562001Beurrier C Bioulac B Audin J et al: High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J Neurophysiol 85:1351–1356 2001

    • Search Google Scholar
    • Export Citation
  • 20.

    Bowen JMunro-Davies LESilburn Pet al: Non-microelectrode recording-guided pallidotomy in Lozano AM (ed): Progress in Neurological Surgery. Vol 15. Movement Disorder Surgery. Basel: Karger2000 pp 132147Bowen J Munro-Davies LE Silburn P et al: Non-microelectrode recording-guided pallidotomy in Lozano AM (ed): Progress in Neurological Surgery. Vol 15. Movement Disorder Surgery. Basel: Karger 2000 pp 132–147

    • Search Google Scholar
    • Export Citation
  • 21.

    Burchiel KJNguyen TTCoombs BDet al: MRI distortion and stereotactic neurosurgery using the Cosman-Roberts-Wells and Leksell frames. Stereotact Funct Neurosurg 66:1231361996Burchiel KJ Nguyen TT Coombs BD et al: MRI distortion and stereotactic neurosurgery using the Cosman-Roberts-Wells and Leksell frames. Stereotact Funct Neurosurg 66:123–136 1996

    • Search Google Scholar
    • Export Citation
  • 22.

    Caparros-Lefebvre DBlond SFeltin MPet al: Improvement of levodopa induced dyskinesias by thalamic deep brain stimulation is related to slight variation in electrode placement: possible involvement of the centre median and parafascicularis complex. J Neurol Neurosurg Psychiatry 67:3083141999Caparros-Lefebvre D Blond S Feltin MP et al: Improvement of levodopa induced dyskinesias by thalamic deep brain stimulation is related to slight variation in electrode placement: possible involvement of the centre median and parafascicularis complex. J Neurol Neurosurg Psychiatry 67:308–314 1999

    • Search Google Scholar
    • Export Citation
  • 23.

    Demeter SRingo JLDoty RW: Morphometric analysis of the human corpus callosum and anterior commissure. Hum Neurobiol 6:2192261988Demeter S Ringo JL Doty RW: Morphometric analysis of the human corpus callosum and anterior commissure. Hum Neurobiol 6:219–226 1988

    • Search Google Scholar
    • Export Citation
  • 24.

    Fahn SElton RLMembers of the UPDRS Development Committee: Unified Parkinson's Disease Rating Scale in Fahn SMarsden CDGoldstein Met al (eds): Recent Developments in Parkinson's Disease. Florham Park, NJ: Macmillan Healthcare Information1987 Vol 2 pp 153163Fahn S Elton RL Members of the UPDRS Development Committee: Unified Parkinson's Disease Rating Scale in Fahn S Marsden CD Goldstein M et al (eds): Recent Developments in Parkinson's Disease. Florham Park NJ: Macmillan Healthcare Information 1987 Vol 2 pp 153–163

    • Search Google Scholar
    • Export Citation
  • 25.

    Filion MTremblay LBédardPJ: Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Res 444:1651761988Filion M Tremblay L Bédard PJ: Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Res 444:165–176 1988

    • Search Google Scholar
    • Export Citation
  • 26.

    Filion MTremblay LMatsumura Met al: Focalisation dynamique de la convergence informationnelle dans les noyaux gris centraux. Rev Neurol 150:6276331994Filion M Tremblay L Matsumura M et al: Focalisation dynamique de la convergence informationnelle dans les noyaux gris centraux. Rev Neurol 150:627–633 1994

    • Search Google Scholar
    • Export Citation
  • 27.

    FitzGibbon TSolomon SGGoodchild AK: Distribution of calbindin, parvalbumin, and calretinin immunoreactivity in the reticular thalamic nucleus of the marmoset: evidence for a medial leaflet of incertal neurons. Exp Neurol 164:3713832000FitzGibbon T Solomon SG Goodchild AK: Distribution of calbindin parvalbumin and calretinin immunoreactivity in the reticular thalamic nucleus of the marmoset: evidence for a medial leaflet of incertal neurons. Exp Neurol 164:371–383 2000

    • Search Google Scholar
    • Export Citation
  • 28.

    Forster AEljamel MSVarma TRet al: Audit of neurophysiological recording during movement disorder surgery. Stereotact Funct Neurosurg 72:1541561999Forster A Eljamel MS Varma TR et al: Audit of neurophysiological recording during movement disorder surgery. Stereotact Funct Neurosurg 72:154–156 1999

    • Search Google Scholar
    • Export Citation
  • 29.

    François CSavy CJan Cet al: Dopaminergic innervation of the subthalamic nucleus in the normal state, in MPTP-treated monkeys, and in Parkinson's disease patients. J Comp Neurol 425:1211292000François C Savy C Jan C et al: Dopaminergic innervation of the subthalamic nucleus in the normal state in MPTP-treated monkeys and in Parkinson's disease patients. J Comp Neurol 425:121–129 2000

    • Search Google Scholar
    • Export Citation
  • 30.

    Gill SSHeywood P: Subthalamic nucleus lesions in Lozano AM (ed): Progress in Neurological Surgery. Vol 15. Movement Disorder Surgery. Basel: Karger2000 pp 188195Gill SS Heywood P: Subthalamic nucleus lesions in Lozano AM (ed): Progress in Neurological Surgery. Vol 15. Movement Disorder Surgery. Basel: Karger 2000 pp 188–195

    • Search Google Scholar
    • Export Citation
  • 31.

    Guridi JObeso JA: The subthalamic nucleus, hemiballismus and Parkinson's disease: reappraisal of a neurosurgical dogma. Brain 124:5192001Guridi J Obeso JA: The subthalamic nucleus hemiballismus and Parkinson's disease: reappraisal of a neurosurgical dogma. Brain 124:5–19 2001

    • Search Google Scholar
    • Export Citation
  • 32.

    Guridi JRodriguez-Oroz MCLozano AMet al: Targeting the basal ganglia for deep brain stimulation in Parkinson's disease. Neurology 55 (Suppl 6):S21S282000Guridi J Rodriguez-Oroz MC Lozano AM et al: Targeting the basal ganglia for deep brain stimulation in Parkinson's disease. Neurology 55 (Suppl 6):S21–S28 2000

    • Search Google Scholar
    • Export Citation
  • 33.

    Hariz MIBergenheim AT: Clinical evaluation of computed tomography-guided versus ventriculography-guided thalamotomy for movement disorders. Acta Neurochir Suppl 58:53551993Hariz MI Bergenheim AT: Clinical evaluation of computed tomography-guided versus ventriculography-guided thalamotomy for movement disorders. Acta Neurochir Suppl 58:53–55 1993

    • Search Google Scholar
    • Export Citation
  • 34.

    Hariz MIBergenheim ATFodstad H: Air-ventriculography provokes an anterior displacement of the third ventricle during functional stereotactic procedures. Acta Neurochir 123:1471521993Hariz MI Bergenheim AT Fodstad H: Air-ventriculography provokes an anterior displacement of the third ventricle during functional stereotactic procedures. Acta Neurochir 123:147–152 1993

    • Search Google Scholar
    • Export Citation
  • 35.

    Hariz MIFodstad H: Do microelectrode techniques increase accuracy or decrease risks in pallidotomy and deep brain stimulation? A critical review of the literature. Stereotact Funct Neurosurg 72:1571691999Hariz MI Fodstad H: Do microelectrode techniques increase accuracy or decrease risks in pallidotomy and deep brain stimulation? A critical review of the literature. Stereotact Funct Neurosurg 72:157–169 1999

    • Search Google Scholar
    • Export Citation
  • 36.

    Hirabayashi HHariz MIFagerlund M: Comparison between stereotactic CT and MRI coordinates of pallidal and thalamic targets using the Laitinen noninvasive stereoadapter. Stereotact Funct Neurosurg 71:1171301998Hirabayashi H Hariz MI Fagerlund M: Comparison between stereotactic CT and MRI coordinates of pallidal and thalamic targets using the Laitinen noninvasive stereoadapter. Stereotact Funct Neurosurg 71:117–130 1998

    • Search Google Scholar
    • Export Citation
  • 37.

    Holtzheimer PE IIIRoberts DWDarcey TM: Magnetic resonance imaging versus computed tomography for target localization in functional stereotactic neurosurgery. Neurosurgery 45:2902981999Holtzheimer PE III Roberts DW Darcey TM: Magnetic resonance imaging versus computed tomography for target localization in functional stereotactic neurosurgery. Neurosurgery 45:290–298 1999

    • Search Google Scholar
    • Export Citation
  • 38.

    Houser CRVaughn JEBarber RPet al: GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Res 200:3413541980Houser CR Vaughn JE Barber RP et al: GABA neurons are the major cell type of the nucleus reticularis thalami. Brain Res 200:341–354 1980

    • Search Google Scholar
    • Export Citation
  • 39.

    Hutchison WDAllan RJOpitz Het al: Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson's disease. Ann Neurol 44:6226281998Hutchison WD Allan RJ Opitz H et al: Neurophysiological identification of the subthalamic nucleus in surgery for Parkinson's disease. Ann Neurol 44:622–628 1998

    • Search Google Scholar
    • Export Citation
  • 40.

    Hutchison WDLozano AM: Microelectrode recordings in movement disorder surgery in Lozano AM (ed): Progress in Neurological Surgery. Vol 15. Movement Disorder Surgery. Basel: Karger2000 pp 103117Hutchison WD Lozano AM: Microelectrode recordings in movement disorder surgery in Lozano AM (ed): Progress in Neurological Surgery. Vol 15. Movement Disorder Surgery. Basel: Karger 2000 pp 103–117

    • Search Google Scholar
    • Export Citation
  • 41.

    Hutchison WDLozano AMDavis KDet al: Differential neuronal activity in segments of globus pallidus in Parkinson's disease patients. Neuroreport 5:153315371994Hutchison WD Lozano AM Davis KD et al: Differential neuronal activity in segments of globus pallidus in Parkinson's disease patients. Neuroreport 5:1533–1537 1994

    • Search Google Scholar
    • Export Citation
  • 42.

    Inase MTokuno HNambu Aet al: Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Res 833:1912011999Inase M Tokuno H Nambu A et al: Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: comparison with the input zones from the supplementary motor area. Brain Res 833:191–201 1999

    • Search Google Scholar
    • Export Citation
  • 43.

    Jahanshahi MArdouin CMABrown RGet al: The impact of deep brain stimulation on executive function in Parkinson's disease. Brain 123:114211542000Jahanshahi M Ardouin CMA Brown RG et al: The impact of deep brain stimulation on executive function in Parkinson's disease. Brain 123:1142–1154 2000

    • Search Google Scholar
    • Export Citation
  • 44.

    Jones EG: Some aspects of the organization of the thalamic reticular complex. J Comp Neurol 162:2853081975Jones EG: Some aspects of the organization of the thalamic reticular complex. J Comp Neurol 162:285–308 1975

    • Search Google Scholar
    • Export Citation
  • 45.

    Joy MLLebedev VPGati JS: Imaging of current density and current pathways in rabbit brain during transcranial electrostimulation. IEEE Trans Biomed Eng 46:113911491999Joy ML Lebedev VP Gati JS: Imaging of current density and current pathways in rabbit brain during transcranial electrostimulation. IEEE Trans Biomed Eng 46:1139–1149 1999

    • Search Google Scholar
    • Export Citation
  • 46.

    Kolmac CMitrofanis J: Distribution of various neurochemicals within the zona incerta: an immunocytochemical and histochemical study. Anat Embryol 199:2652801998Kolmac C Mitrofanis J: Distribution of various neurochemicals within the zona incerta: an immunocytochemical and histochemical study. Anat Embryol 199:265–280 1998

    • Search Google Scholar
    • Export Citation
  • 47.

    Krack PKumar RArdouin Cet al: Mirthful laughter induced by subthalamic nucleus stimulation. Mov Disord 16:8678752001Krack P Kumar R Ardouin C et al: Mirthful laughter induced by subthalamic nucleus stimulation. Mov Disord 16:867–875 2001

    • Search Google Scholar
    • Export Citation
  • 48.

    Krack PLimousin PBenabid ALet al: Chronic stimulation of subthalamic nucleus improves levodopa-induced dyskinesias in Parkinson's disease. Lancet 350:167616801997 (Letter)Krack P Limousin P Benabid AL et al: Chronic stimulation of subthalamic nucleus improves levodopa-induced dyskinesias in Parkinson's disease. Lancet 350:1676–1680 1997 (Letter)

    • Search Google Scholar
    • Export Citation
  • 49.

    Krack PPollak PLimousin Pet al: From off-period dystonia to peak-dose chorea. The clinical spectrum of varying subthalamic nucleus activity. Brain 122:113311461999Krack P Pollak P Limousin P et al: From off-period dystonia to peak-dose chorea. The clinical spectrum of varying subthalamic nucleus activity. Brain 122:1133–1146 1999

    • Search Google Scholar
    • Export Citation
  • 50.

    Kumar RLozano AMKim YJet al: Double-blind evaluation of the effects of subthalamic nucleus deep brain stimulation in advanced Parkinson's disease. Neurology 51:8508551998Kumar R Lozano AM Kim YJ et al: Double-blind evaluation of the effects of subthalamic nucleus deep brain stimulation in advanced Parkinson's disease. Neurology 51:850–855 1998

    • Search Google Scholar
    • Export Citation
  • 51.

    Laitinen LVBergenheim ATHariz MI: Leksell's posteroventral pallidotomy in the treatment of Parkinson's disease. J Neurosurg 76:53611992.Laitinen LV Bergenheim AT Hariz MI: Leksell's posteroventral pallidotomy in the treatment of Parkinson's disease. J Neurosurg 76:53–61 1992.

    • Search Google Scholar
    • Export Citation
  • 52.

    Lang AELozano AM: Parkinson's disease. First of two parts. N Engl J Med 339:104410531998Lang AE Lozano AM: Parkinson's disease. First of two parts. N Engl J Med 339:1044–1053 1998

    • Search Google Scholar
    • Export Citation
  • 53.

    Lang AELozano AM: Parkinson's disease. Second of two parts. N Engl J Med 339:113011431998Lang AE Lozano AM: Parkinson's disease. Second of two parts. N Engl J Med 339:1130–1143 1998

    • Search Google Scholar
    • Export Citation
  • 54.

    Lang AELozano AMMontgomery Eet al: Posteroventral medial pallidotomy in advanced Parkinson's disease. N Engl J Med 337:103610421997Lang AE Lozano AM Montgomery E et al: Posteroventral medial pallidotomy in advanced Parkinson's disease. N Engl J Med 337:1036–1042 1997

    • Search Google Scholar
    • Export Citation
  • 55.

    Levy RDostrovsky JOLang AEet al: Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson's disease. J Neurophysiol 86:2492602001Levy R Dostrovsky JO Lang AE et al: Effects of apomorphine on subthalamic nucleus and globus pallidus internus neurons in patients with Parkinson's disease. J Neurophysiol 86:249–260 2001

    • Search Google Scholar
    • Export Citation
  • 56.

    Levy RLang AEDostrovsky JOet al: Lidocaine and muscimol microinjections in subthalamic nucleus reverse Parkinsonian symptoms. Brain 124:210521182001Levy R Lang AE Dostrovsky JO et al: Lidocaine and muscimol microinjections in subthalamic nucleus reverse Parkinsonian symptoms. Brain 124:2105–2118 2001

    • Search Google Scholar
    • Export Citation
  • 57.

    Lozano AM: Deep brain stimulation for Parkinson's disease. Parkinsonism Relat Disord 7:1992032001Lozano AM: Deep brain stimulation for Parkinson's disease. Parkinsonism Relat Disord 7:199–203 2001

    • Search Google Scholar
    • Export Citation
  • 58.

    Lozano AM: Vim thalamic stimulation for tremor. Arch Med Res 31:2662692000Lozano AM: Vim thalamic stimulation for tremor. Arch Med Res 31:266–269 2000

    • Search Google Scholar
    • Export Citation
  • 59.

    Lozano AMLang AEGalvez-Jimenez Net al: Effect of GPi pallidotomy on motor function in Parkinson's disease. Lancet 346:138313871995Lozano AM Lang AE Galvez-Jimenez N et al: Effect of GPi pallidotomy on motor function in Parkinson's disease. Lancet 346:1383–1387 1995

    • Search Google Scholar
    • Export Citation
  • 60.

    Luechinger RWeber OMBieler Met al: Heat distribution near pacemaker lead tips. Proc Int Soc Mag Reson Med 9:17592001Luechinger R Weber OM Bieler M et al: Heat distribution near pacemaker lead tips. Proc Int Soc Mag Reson Med 9:1759 2001

    • Search Google Scholar
    • Export Citation
  • 61.

    Mitrofanis JdeFonseka R: Organisation of connections between the zona incerta and the interposed nucleus. Anat Embryol 204:1531592001Mitrofanis J deFonseka R: Organisation of connections between the zona incerta and the interposed nucleus. Anat Embryol 204:153–159 2001

    • Search Google Scholar
    • Export Citation
  • 62.

    Moro EScerrati MRomito LMet al: Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson's disease. Neurology 53:85901999Moro E Scerrati M Romito LM et al: Chronic subthalamic nucleus stimulation reduces medication requirements in Parkinson's disease. Neurology 53:85–90 1999

    • Search Google Scholar
    • Export Citation
  • 63.

    Mundinger F: Results of 500 subthalamotomies in the region of the zonal incerta in Gillingham FJDonaldson IML (eds): Third Symposium on Parkinson's Disease. Edinburgh: Livingstone1969 pp 261265Mundinger F: Results of 500 subthalamotomies in the region of the zonal incerta in Gillingham FJ Donaldson IML (eds): Third Symposium on Parkinson's Disease. Edinburgh: Livingstone 1969 pp 261–265

    • Search Google Scholar
    • Export Citation
  • 64.

    Nakano KKayahara TTsutsumi Tet al: Neural circuits and functional organization of the striatum. J Neurol 247 (Suppl 5):V1V152000Nakano K Kayahara T Tsutsumi T et al: Neural circuits and functional organization of the striatum. J Neurol 247 (Suppl 5):V1–V15 2000

    • Search Google Scholar
    • Export Citation
  • 65.

    Nambu ATokuno HHamada Iet al: Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 84:2893002000Nambu A Tokuno H Hamada I et al: Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 84:289–300 2000

    • Search Google Scholar
    • Export Citation
  • 66.

    Nambu ATokuno HInase Met al: Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: comparison with the input zones from the primary motor cortex and the supplementary motor area. Neurosci Lett 239:13161997Nambu A Tokuno H Inase M et al: Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: comparison with the input zones from the primary motor cortex and the supplementary motor area. Neurosci Lett 239:13–16 1997

    • Search Google Scholar
    • Export Citation
  • 67.

    Niemann KNaujokat CPohl Get al: Verification of the Schaltenbrand and Wahren stereotactic atlas. Acta Neurochir 129:72811994Niemann K Naujokat C Pohl G et al: Verification of the Schaltenbrand and Wahren stereotactic atlas. Acta Neurochir 129:72–81 1994

    • Search Google Scholar
    • Export Citation
  • 68.

    Niemann Kvan Nieuwenhofen I: One atlas—three anatomies: relationships of the Schaltenbrand and Wahren microscopic data. Acta Neurochir 141:102510381999Niemann K van Nieuwenhofen I: One atlas—three anatomies: relationships of the Schaltenbrand and Wahren microscopic data. Acta Neurochir 141:1025–1038 1999

    • Search Google Scholar
    • Export Citation
  • 69.

    Ottersen OPStorm-Mathisen J: Neurons containing or accumulating transmitter amino acids in Björklund AHökfelt TKuhar MJ (eds): Handbook of Chemical Neuroanatomy. Vol 3: Classical Transmitters and Transmitter Receptors in the CNS Part II. Amsterdam: Elsesevier1984 pp 141246Ottersen OP Storm-Mathisen J: Neurons containing or accumulating transmitter amino acids in Björklund A Hökfelt T Kuhar MJ (eds): Handbook of Chemical Neuroanatomy. Vol 3: Classical Transmitters and Transmitter Receptors in the CNS Part II. Amsterdam: Elsesevier 1984 pp 141–246

    • Search Google Scholar
    • Export Citation
  • 70.

    Parent ACicchetti F: The current model of basal ganglia organization under scrutiny. Mov Disord 13:1992021998Parent A Cicchetti F: The current model of basal ganglia organization under scrutiny. Mov Disord 13:199–202 1998

    • Search Google Scholar
    • Export Citation
  • 71.

    Parent ACôté PYLavoie B: Chemical anatomy of primate basal ganglia. Prog Neurobiol 46:1311971995Parent A Côté PY Lavoie B: Chemical anatomy of primate basal ganglia. Prog Neurobiol 46:131–197 1995

    • Search Google Scholar
    • Export Citation
  • 72.

    Parent AHazrati LN: Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20:911271995Parent A Hazrati LN: Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Brain Res Rev 20:91–127 1995

    • Search Google Scholar
    • Export Citation
  • 73.

    Parent AHazrati LN: Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20:1281541995Parent A Hazrati LN: Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Res Brain Res Rev 20:128–154 1995

    • Search Google Scholar
    • Export Citation
  • 74.

    Pictet JWicky SMeuli Ret al: Heating effects around resonant lengths of wire during RF excitation. Proc Intl Soc Mag Reson Med 9:17572001Pictet J Wicky S Meuli R et al: Heating effects around resonant lengths of wire during RF excitation. Proc Intl Soc Mag Reson Med 9:1757 2001

    • Search Google Scholar
    • Export Citation
  • 75.

    Power BDLeamey CAMitrofanis J: Evidence for a visual sub-sector within the zona incerta. Vis Neurosci 18:1791862001Power BD Leamey CA Mitrofanis J: Evidence for a visual sub-sector within the zona incerta. Vis Neurosci 18:179–186 2001

    • Search Google Scholar
    • Export Citation
  • 76.

    Power BDMitrofanis J: Zona incerta: substrate for contralateral interconnectivity in the thalamus of rats. J Comp Neurol 436:52632001Power BD Mitrofanis J: Zona incerta: substrate for contralateral interconnectivity in the thalamus of rats. J Comp Neurol 436:52–63 2001

    • Search Google Scholar
    • Export Citation
  • 77.

    Prensa LCossette MParent A: Dopaminergic innervation of human basal ganglia. J Chem Neuroanat 20:2072132000Prensa L Cossette M Parent A: Dopaminergic innervation of human basal ganglia. J Chem Neuroanat 20:207–213 2000

    • Search Google Scholar
    • Export Citation
  • 78.

    Ranck JB Jr: Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98:4174401975Ranck JB Jr: Which elements are excited in electrical stimulation of mammalian central nervous system: a review. Brain Res 98:417–440 1975

    • Search Google Scholar
    • Export Citation
  • 79.

    Rodriguez-Oroz MCGorospe AGuridi Jet al: Bilateral deep brain stimulation of the subthalamic nucleus in Parkinson's disease. Neurology 55 (Suppl 6):S45S512000Rodriguez-Oroz MC Gorospe A Guridi J et al: Bilateral deep brain stimulation of the subthalamic nucleus in Parkinson's disease. Neurology 55 (Suppl 6):S45–S51 2000

    • Search Google Scholar
    • Export Citation
  • 80.

    Rodriguez-Oroz MCRodriguez MGuridi Jet al: The subthalamic nucleus in Parkinson's disease: somatotopic organization and physiological characteristics. Brain 124:177717902001Rodriguez-Oroz MC Rodriguez M Guridi J et al: The subthalamic nucleus in Parkinson's disease: somatotopic organization and physiological characteristics. Brain 124:1777–1790 2001

    • Search Google Scholar
    • Export Citation
  • 81.

    Roger MCadusseau J: Afferents to the zona incerta in the rat: a combined retrograde and anterograde study. J Comp Neurol 241:4804921985Roger M Cadusseau J: Afferents to the zona incerta in the rat: a combined retrograde and anterograde study. J Comp Neurol 241:480–492 1985

    • Search Google Scholar
    • Export Citation
  • 82.

    Sadikot AFParent AFrancois C: Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol 315:1371591992Sadikot AF Parent A Francois C: Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: a PHA-L study of subcortical projections. J Comp Neurol 315:137–159 1992

    • Search Google Scholar
    • Export Citation
  • 83.

    Saint-Cyr JAPereira LCMLozano AMet al: Location and size variability in the human subthalamic nucleus as shown by MRI. Mov Disord 15 (Suppl 3):2102000 (Abstract)Saint-Cyr JA Pereira LCM Lozano AM et al: Location and size variability in the human subthalamic nucleus as shown by MRI. Mov Disord 15 (Suppl 3):210 2000 (Abstract)

    • Search Google Scholar
    • Export Citation
  • 84.

    Saint-Cyr JAPereira LCMMikulis DMet al: Accuracy of placement of deep brain stimulation electrodes in the subthalamic nucleus by MRI and neurophysiological guidance. Mov Disord 15 (Suppl 3):51122000 (Abstract)Saint-Cyr JA Pereira LCM Mikulis DM et al: Accuracy of placement of deep brain stimulation electrodes in the subthalamic nucleus by MRI and neurophysiological guidance. Mov Disord 15 (Suppl 3):51–12 2000 (Abstract)

    • Search Google Scholar
    • Export Citation
  • 85.

    Saint-Cyr JATrépanier LL: Neuropsychologic assessment of patients for movement disorder surgery. Mov Disord 15:7717832000Saint-Cyr JA Trépanier LL: Neuropsychologic assessment of patients for movement disorder surgery. Mov Disord 15:771–783 2000

    • Search Google Scholar
    • Export Citation
  • 86.

    Saint-Cyr JATrépanier LLKumar Ret al: Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson's disease. Brain 123:209121082000Saint-Cyr JA Trépanier LL Kumar R et al: Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson's disease. Brain 123:2091–2108 2000

    • Search Google Scholar
    • Export Citation
  • 87.

    Sato FParent MLevesque Met al: Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol 424:1421522000Sato F Parent M Levesque M et al: Axonal branching pattern of neurons of the subthalamic nucleus in primates. J Comp Neurol 424:142–152 2000

    • Search Google Scholar
    • Export Citation
  • 88.

    Schaltenbrand GWahren WHassler RG (ed): Atlas for Stereotaxy of the Human Brained 2. Stuttgart: Thieme1977Schaltenbrand G Wahren W Hassler RG (ed): Atlas for Stereotaxy of the Human Brain ed 2. Stuttgart: Thieme 1977

    • Search Google Scholar
    • Export Citation
  • 89.

    Schuurman PRde Bie RMMajoie CBet al: A prospective comparison between three-dimensional magnetic resonance imaging and ventriculography for target-coordinate determination in frame-based functional stereotactic neurosurgery. J Neurosurg 91:9119141999Schuurman PR de Bie RM Majoie CB et al: A prospective comparison between three-dimensional magnetic resonance imaging and ventriculography for target-coordinate determination in frame-based functional stereotactic neurosurgery. J Neurosurg 91:911–914 1999

    • Search Google Scholar
    • Export Citation
  • 90.

    Sellal FHirsch ELisovoski Fet al: Contralateral disappearance of parkinsonian signs after subthalamic hematoma. Neurology 42:2552561992Sellal F Hirsch E Lisovoski F et al: Contralateral disappearance of parkinsonian signs after subthalamic hematoma. Neurology 42:255–256 1992

    • Search Google Scholar
    • Export Citation
  • 91.

    Starr PAVitek JLBakay RA: Ablative surgery and deep brain stimulation for Parkinson's disease. Neurosurgery 43:98910151998Starr PA Vitek JL Bakay RA: Ablative surgery and deep brain stimulation for Parkinson's disease. Neurosurgery 43:989–1015 1998

    • Search Google Scholar
    • Export Citation
  • 92.

    Starr PAVitek JLBakay RAE: Deep brain stimulation for movement disorders. Neurosurg Clin N Am 9:3814021998Starr PA Vitek JL Bakay RAE: Deep brain stimulation for movement disorders. Neurosurg Clin N Am 9:381–402 1998

    • Search Google Scholar
    • Export Citation
  • 93.

    Starr PAVitek JLDeLong Met al: Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery 44:3033141999Starr PA Vitek JL DeLong M et al: Magnetic resonance imaging-based stereotactic localization of the globus pallidus and subthalamic nucleus. Neurosurgery 44:303–314 1999

    • Search Google Scholar
    • Export Citation
  • 94.

    Steriade MLlinás RR: The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68:6497421988Steriade M Llinás RR: The functional states of the thalamus and the associated neuronal interplay. Physiol Rev 68:649–742 1988

    • Search Google Scholar
    • Export Citation
  • 95.

    Stieltjes BKaufmann WEvan Zijl PCet al: Diffusion tensor imaging and axonal tracking in the human brainstem. Neuroimage 14:7237352001Stieltjes B Kaufmann WE van Zijl PC et al: Diffusion tensor imaging and axonal tracking in the human brainstem. Neuroimage 14:723–735 2001

    • Search Google Scholar
    • Export Citation
  • 96.

    St-Jean PSadikot AFCollins Let al: Automated atlas integration and interactive three-dimensional visualization tools for planning and guidance in functional neurosurgery. IEEE Trans Med Imaging 17:6726801998St-Jean P Sadikot AF Collins L et al: Automated atlas integration and interactive three-dimensional visualization tools for planning and guidance in functional neurosurgery. IEEE Trans Med Imaging 17:672–680 1998

    • Search Google Scholar
    • Export Citation
  • 97.

    Tan EKJankovic J: Movement disorder surgery: patient selection and evaluation of surgical results in Lozano AM (ed): Progress in Neurological Surgery. Vol 15. Movement Disorder Surgery. Basel: Karger2000 pp 7890Tan EK Jankovic J: Movement disorder surgery: patient selection and evaluation of surgical results in Lozano AM (ed): Progress in Neurological Surgery. Vol 15. Movement Disorder Surgery. Basel: Karger 2000 pp 78–90

    • Search Google Scholar
    • Export Citation
  • 98.

    Tasker RRDostrovsky JO: Invasive lesioning of the CNS for functional disorders in Alexander E IIIMaciunas RJ (eds): Advanced Neurosurgical Navigation. New York: Thieme Medical1999 pp 483506Tasker RR Dostrovsky JO: Invasive lesioning of the CNS for functional disorders in Alexander E III Maciunas RJ (eds): Advanced Neurosurgical Navigation. New York: Thieme Medical 1999 pp 483–506

    • Search Google Scholar
    • Export Citation
  • 99.

    Thompson TPLunsford LDKondziolka D: Technical considerations in movement disorder surgery: frames, imaging and intraoperative monitoring in Lozano AM (ed): Progress in Neurological Surgery. Vol 15. Movement Disorder Surgery. Basel: Karger2000 pp 91102Thompson TP Lunsford LD Kondziolka D: Technical considerations in movement disorder surgery: frames imaging and intraoperative monitoring in Lozano AM (ed): Progress in Neurological Surgery. Vol 15. Movement Disorder Surgery. Basel: Karger 2000 pp 91–102

    • Search Google Scholar
    • Export Citation
  • 100.

    Tronnier VMStaubert AHahnel Set al: Magnetic resonance imaging with implanted neurostimulators: an in vitro and in vivo study. Neurosurgery 44:1181261999Tronnier VM Staubert A Hahnel S et al: Magnetic resonance imaging with implanted neurostimulators: an in vitro and in vivo study. Neurosurgery 44:118–126 1999

    • Search Google Scholar
    • Export Citation
  • 101.

    Tuch DSWedeen VJDale AMet al: Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proc Natl Acad Sci USA 98:11697117012001Tuch DS Wedeen VJ Dale AM et al: Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proc Natl Acad Sci USA 98:11697–11701 2001

    • Search Google Scholar
    • Export Citation
  • 102.

    Velasco FJimenez FPerez MLet al: Electrical stimulation of the prelemniscal radiation in the treatment of Parkinson's disease: an old target revised with new techniques. Neurosurgery 49:2933082001Velasco F Jimenez F Perez ML et al: Electrical stimulation of the prelemniscal radiation in the treatment of Parkinson's disease: an old target revised with new techniques. Neurosurgery 49:293–308 2001

    • Search Google Scholar
    • Export Citation
  • 103.

    Vidakovic ADragasevic NKostic VS: Hemiballism: report of 25 cases. J Neurol Neurosurg Psychiatry 57:9459491994Vidakovic A Dragasevic N Kostic VS: Hemiballism: report of 25 cases. J Neurol Neurosurg Psychiatry 57:945–949 1994

    • Search Google Scholar
    • Export Citation
  • 104.

    Volkmann JAllert NVoges Jet al: Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD. Neurology 56:5485512001Volkmann J Allert N Voges J et al: Safety and efficacy of pallidal or subthalamic nucleus stimulation in advanced PD. Neurology 56:548–551 2001

    • Search Google Scholar
    • Export Citation
  • 105.

    Volkmann JFogel WKrack P: Postoperatives neurologisches Management bei Stimulation des Nucleus subthalamicus. Akt Neurol 27 (Suppl 1):S23S392000Volkmann J Fogel W Krack P: Postoperatives neurologisches Management bei Stimulation des Nucleus subthalamicus. Akt Neurol 27 (Suppl 1):S23–S39 2000

    • Search Google Scholar
    • Export Citation
  • 106.

    Volkmann JSturm VWeiss Pet al: Bilateral high-frequency stimulation of the internal globus pallidus in advanced Parkinson's disease. Ann Neurol 44:9539611998Volkmann J Sturm V Weiss P et al: Bilateral high-frequency stimulation of the internal globus pallidus in advanced Parkinson's disease. Ann Neurol 44:953–961 1998

    • Search Google Scholar
    • Export Citation
  • 107.

    Walton LHampshire AForster DMet al: Stereotactic localization with magnetic resonance imaging: a phantom study to compare the accuracy obtained using two-dimensional and three-dimensional data acquisitions. Neurosurgery 41:1311391997Walton L Hampshire A Forster DM et al: Stereotactic localization with magnetic resonance imaging: a phantom study to compare the accuracy obtained using two-dimensional and three-dimensional data acquisitions. Neurosurgery 41:131–139 1997

    • Search Google Scholar
    • Export Citation
  • 108.

    Wichmann TDeLong MR: Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6:7517581996Wichmann T DeLong MR: Functional and pathophysiological models of the basal ganglia. Curr Opin Neurobiol 6:751–758 1996

    • Search Google Scholar
    • Export Citation
  • 109.

    Yokoyama TSugiyama KNishizawa Set al: Neural activity of the subthalamic nucleus in Parkinson's disease patients. Acta Neurochir 140:128712911998Yokoyama T Sugiyama K Nishizawa S et al: Neural activity of the subthalamic nucleus in Parkinson's disease patients. Acta Neurochir 140:1287–1291 1998

    • Search Google Scholar
    • Export Citation
  • 110.

    Zincone ALandi APiolti Ret al: Physiologic study of the subthalamic volume. Neurol Sci 22:1111122001Zincone A Landi A Piolti R et al: Physiologic study of the subthalamic volume. Neurol Sci 22:111–112 2001

    • Search Google Scholar
    • Export Citation
  • 111.

    Zonenshayn MRezai ARMogilner AYet al: Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting. Neurosurgery 47:2822942000Zonenshayn M Rezai AR Mogilner AY et al: Comparison of anatomic and neurophysiological methods for subthalamic nucleus targeting. Neurosurgery 47:282–294 2000

    • Search Google Scholar
    • Export Citation

Cited By

Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 320 320 12
Full Text Views 161 161 4
PDF Downloads 41 41 1
EPUB Downloads 0 0 0

PubMed

Google Scholar