Significant reduction in brain swelling by administration of nonpeptide kinin B2 receptor antagonist LF 16—0687Ms after controlled cortical impact injury in rats

John F. Stover M.D.1, Nils-Kristian Dohse Cand.Med.1, and Andreas W. Unterberg M.D., Ph.D.1
View More View Less
  • 1 Department of Neurosurgery, Charité—Virchow Medical Center, Berlin, Germany
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

Object. Identification of new therapeutic agents aimed at attenuating posttraumatic brain edema formation remains an unresolved challenge. Among others, activation of bradykinin B2 receptors is known to mediate the formation of brain edema. The purpose of this study was to investigate the protective effect of the novel nonpeptide B2 receptor antagonist, LF 16-0687Ms, in brain-injured rats.

Methods. Focal contusion was produced by controlled cortical impact injury. Five minutes after trauma, the rats received a single dose of no, low- (3 mg/kg body weight), or high- (30 mg/kg) dose LF 16-0687Ms. After 24 hours, the amount of brain swelling and hemispheric water content were determined. Low and high doses of LF 16-0687Ms significantly reduced brain swelling by 25% and 27%, respectively (p < 0.03). Hemispheric water content tended to be increased in the nontraumatized hemisphere.

In a subsequent series of 10 rats, cisternal cerebrospinal fluid (CSF) samples were collected to determine whether changes in substances associated with edema formation could clarify why LF 16-0687Ms increases water content. For this, the volume regulator amino acid taurine, the excitatory transmitter glutamate, and the adenosine triphosphate degradation products hypoxanthine and xanthine were measured. In CSF, the levels of taurine, hypoxanthine, and xanthine were significantly decreased following a single administration of LF 16-0687Ms (p < 0.005); the level of glutamate, however, was double that found in control animals (p < 0.05).

Conclusions. Using the present study design, a single administration of LF 16-0687Ms successfully reduced posttraumatic brain swelling. The decreased levels of taurine, hypoxanthine, and xanthine may reflect reduced posttraumatic brain edema, whereas the increased level of glutamate could account for the elevated water content observed in the nontraumatized hemisphere.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1.

    Baethmann A, , Maier-Hauff K, & Schürer L, et al: Release of glutamate and of free fatty acids in vasogenic brain edema. J Neurosurg 70:578591, 1989 Baethmann A, Maier-Hauff K, Schürer L, et al: Release of glutamate and of free fatty acids in vasogenic brain edema. J Neurosurg 70:578–591, 1989

    • Search Google Scholar
    • Export Citation
  • 2.

    Başkaya MK, , Rao AM, & Doğan A, et al: The biphasic opening of the blood-brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett 226:3336, 1997 Başkaya MK, Rao AM, Doğan A, et al: The biphasic opening of the blood-brain barrier in the cortex and hippocampus after traumatic brain injury in rats. Neurosci Lett 226:33–36, 1997

    • Search Google Scholar
    • Export Citation
  • 3.

    Bhoola KD, , Figueroa CD, & Worthy K: Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev 44:180, 1992 Bhoola KD, Figueroa CD, Worthy K: Bioregulation of kinins: kallikreins, kininogens, and kininases. Pharmacol Rev 44:1–80, 1992

    • Search Google Scholar
    • Export Citation
  • 4.

    Eells JT, , Spector R, & Huntoon S: Nucleoside and oxypurine homeostasis in adult rabbit cerebrospinal fluid and plasma. J Neurochem 42:16201624, 1984 Eells JT, Spector R, Huntoon S: Nucleoside and oxypurine homeostasis in adult rabbit cerebrospinal fluid and plasma. J Neurochem 42:1620–1624, 1984

    • Search Google Scholar
    • Export Citation
  • 5.

    Ellis EF, , Chao J, & Heizer ML: Brain kininogen following experimental brain injury: evidence for a secondary event. J Neurosurg 71:437442, 1989 Ellis EF, Chao J, Heizer ML: Brain kininogen following experimental brain injury: evidence for a secondary event. J Neurosurg 71:437–442, 1989

    • Search Google Scholar
    • Export Citation
  • 6.

    Eriskat J, , Schürer L, & Kempski O, et al: Growth kinetics of a primary brain tissue necrosis from a focal lesion. Acta Neurochir Suppl 60:425427, 1994 Eriskat J, Schürer L, Kempski O, et al: Growth kinetics of a primary brain tissue necrosis from a focal lesion. Acta Neurochir Suppl 60:425–427, 1994

    • Search Google Scholar
    • Export Citation
  • 7.

    Graeff FG, , Pelá IR, & Rocha e Silva M: Behavioural and somatic effects of bradykinin injected into the cerebral ventricles of unanaesthetized rabbits. Br J Pharmacol Chemother 37:723732, 1969 Graeff FG, Pelá IR, Rocha e Silva M: Behavioural and somatic effects of bradykinin injected into the cerebral ventricles of unanaesthetized rabbits. Br J Pharmacol Chemother 37:723–732, 1969

    • Search Google Scholar
    • Export Citation
  • 8.

    Hall ED, , McCall JM, & Means ED: Therapeutic potential of the lazaroids (21-aminosteroids) in acute central nervous system trauma, ischemia and subarachnoid hemorrhage. Adv Pharmacol 28:221268, 1994 Hall ED, McCall JM, Means ED: Therapeutic potential of the lazaroids (21-aminosteroids) in acute central nervous system trauma, ischemia and subarachnoid hemorrhage. Adv Pharmacol 28:221–268, 1994

    • Search Google Scholar
    • Export Citation
  • 9.

    Harkness RA: Hypoxanthine, xanthine and uridine in body fluids, indicators of ATP depletion. J Chromatogr 429:255278, 1988 Harkness RA: Hypoxanthine, xanthine and uridine in body fluids, indicators of ATP depletion. J Chromatogr 429:255–278, 1988

    • Search Google Scholar
    • Export Citation
  • 10.

    Homayoun P, & Harik SI: Bradykinin receptors of cerebral microvessels stimulate phosphoinositide turnover. J Cereb Blood Flow Metab 11:557566, 1991 Homayoun P, Harik SI: Bradykinin receptors of cerebral microvessels stimulate phosphoinositide turnover. J Cereb Blood Flow Metab 11:557–566, 1991

    • Search Google Scholar
    • Export Citation
  • 11.

    Hösli E, & Hösli L: Autoradiographic localization of binding for neuropeptide Y and bradykinin on astrocytes. Neuroreport 4:159162, 1993 Hösli E, Hösli L: Autoradiographic localization of binding for neuropeptide Y and bradykinin on astrocytes. Neuroreport 4:159–162, 1993

    • Search Google Scholar
    • Export Citation
  • 12.

    Jeftinija SD, , Jeftinija KV, & Stefanovic G, et al: Neuroligand-evoked calcium-dependent release of excitatory amino acids from cultured astrocytes. J Neurochem 66:676684, 1996 Jeftinija SD, Jeftinija KV, Stefanovic G, et al: Neuroligand-evoked calcium-dependent release of excitatory amino acids from cultured astrocytes. J Neurochem 66:676–684, 1996

    • Search Google Scholar
    • Export Citation
  • 13.

    Kamitani T, , Little MH, & Ellis EF: Evidence for a possible role of the brain kallikrein-kinin system in the modulation of the cerebral circulation. Circ Res 57:545552, 1985 Kamitani T, Little MH, Ellis EF: Evidence for a possible role of the brain kallikrein-kinin system in the modulation of the cerebral circulation. Circ Res 57:545–552, 1985

    • Search Google Scholar
    • Export Citation
  • 14.

    Kamiya T, , Katayama Y, & Kashiwagi F, et al: The role of bradykinin in mediating ischemic brain edema in rats. Stroke 24:571575, 1993 Kamiya T, Katayama Y, Kashiwagi F, et al: The role of bradykinin in mediating ischemic brain edema in rats. Stroke 24:571–575, 1993

    • Search Google Scholar
    • Export Citation
  • 15.

    Kariya K, , Yamauchi A, & Hattori S, et al: The disappearance rate of intraventricular bradykinin in the brain of the conscious rat. Biochem Biophys Res Commun 107:14611466, 1982 Kariya K, Yamauchi A, Hattori S, et al: The disappearance rate of intraventricular bradykinin in the brain of the conscious rat. Biochem Biophys Res Commun 107:1461–1466, 1982

    • Search Google Scholar
    • Export Citation
  • 16.

    Katayama Y, , Becker DP, & Tamura T, et al: Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg 73:889900, 1990 Katayama Y, Becker DP, Tamura T, et al: Massive increases in extracellular potassium and the indiscriminate release of glutamate following concussive brain injury. J Neurosurg 73:889–900, 1990

    • Search Google Scholar
    • Export Citation
  • 17.

    Klatzo I: Pathophysiological aspects of brain edema. Acta Neuropathol 72:236239, 1978 Klatzo I: Pathophysiological aspects of brain edema. Acta Neuropathol 72:236–239, 1978

    • Search Google Scholar
    • Export Citation
  • 18.

    Kochanek PM, , Marion DW, & Zhang W: Severe controlled cortical impact in rats: assessment of cerebral edema, blood flow, and contusion volume. J Neurotrauma 12:10151025, 1995 Kochanek PM, Marion DW, Zhang W: Severe controlled cortical impact in rats: assessment of cerebral edema, blood flow, and contusion volume. J Neurotrauma 12:1015–1025, 1995

    • Search Google Scholar
    • Export Citation
  • 19.

    Kornhuber ME, , Kornhuber J, & Kornhuber AW, et al: Positive correlation between contamination by blood and amino acid levels in cerebrospinal fluid of the rat. Neurosci Lett 69:212215, 1986 Kornhuber ME, Kornhuber J, Kornhuber AW, et al: Positive correlation between contamination by blood and amino acid levels in cerebrospinal fluid of the rat. Neurosci Lett 69:212–215, 1986

    • Search Google Scholar
    • Export Citation
  • 20.

    Kroppenstedt SN, , Kern M, & Thomale UW, et al: Effect of cerebral perfusion pressure on contusion volume following impact injury. J Neurosurg 90:520526, 1999 Kroppenstedt SN, Kern M, Thomale UW, et al: Effect of cerebral perfusion pressure on contusion volume following impact injury. J Neurosurg 90:520–526, 1999

    • Search Google Scholar
    • Export Citation
  • 21.

    Marmarou A, , Nichols J, & Burgess J, et al: Effects of the bradykinin antagonist Bradycor (Deltibant, CP-1027) in severe traumatic brain injury: results of a multi-center, randomized, placebo-controlled trial. American Brain Injury Consortium Group. J Neurotrauma 16:431444, 1999 Marmarou A, Nichols J, Burgess J, et al: Effects of the bradykinin antagonist Bradycor (Deltibant, CP-1027) in severe traumatic brain injury: results of a multi-center, randomized, placebo-controlled trial. American Brain Injury Consortium Group. J Neurotrauma 16:431–444, 1999

    • Search Google Scholar
    • Export Citation
  • 22.

    McIntosh T, , Juhler M, & Wieloch T: Novel pharmacologic strategies in the treatment of experimental traumatic brain injury: 1998. J Neurotrauma 15:731769, 1998 McIntosh T, Juhler M, Wieloch T: Novel pharmacologic strategies in the treatment of experimental traumatic brain injury: 1998. J Neurotrauma 15:731–769, 1998

    • Search Google Scholar
    • Export Citation
  • 23.

    McIntosh TK, , Smith DH, & Meaney DF, et al: Neuropathological sequelae of traumatic brain injury: relationship to neurochemical and biomechanical mechanisms. Lab Invest 74:315342, 1996 McIntosh TK, Smith DH, Meaney DF, et al: Neuropathological sequelae of traumatic brain injury: relationship to neurochemical and biomechanical mechanisms. Lab Invest 74:315–342, 1996

    • Search Google Scholar
    • Export Citation
  • 24.

    Narotam PK, , Rodell TC, & Nadvi SS, et al: Traumatic brain contusions: a clinical role for the kinin antagonist CP-1027. Acta Neurochir 140:793803, 1999 Narotam PK, Rodell TC, Nadvi SS, et al: Traumatic brain contusions: a clinical role for the kinin antagonist CP-1027. Acta Neurochir 140:793–803, 1999

    • Search Google Scholar
    • Export Citation
  • 25.

    Nilsson P, , Hillered L, & Pontén U, et al: Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats. J Cereb Blood Flow Metab 10:631637, 1990 Nilsson P, Hillered L, Pontén U, et al: Changes in cortical extracellular levels of energy-related metabolites and amino acids following concussive brain injury in rats. J Cereb Blood Flow Metab 10:631–637, 1990

    • Search Google Scholar
    • Export Citation
  • 26.

    Obrenovitch TP, & Urenjak J: Altered glutamatergic transmission in neurological disorders: from high extracellular glutamate to excessive synaptic efficacy. Prog Neurobiol 51:3987, 1997 Obrenovitch TP, Urenjak J: Altered glutamatergic transmission in neurological disorders: from high extracellular glutamate to excessive synaptic efficacy. Prog Neurobiol 51:39–87, 1997

    • Search Google Scholar
    • Export Citation
  • 27.

    Pasantes-Morales H, & Moran J, et al: Volume-sensitive release of taurine from cultured astrocytes: properties and mechanism. Glia 3:427432, 1990 Pasantes-Morales H, Moran J, et al: Volume-sensitive release of taurine from cultured astrocytes: properties and mechanism. Glia 3:427–432, 1990

    • Search Google Scholar
    • Export Citation
  • 28.

    Pruneau D, , Chorny J, & Benkowitz V, et al: Effect of LF 16-0687Ms, a new peptide bradykinin B2 receptor antagonist in a rat model of closed head trauma. Journal of Neurotrauma 16:10571065, 1999 Pruneau D, Chorny J, Benkowitz V, et al: Effect of LF 16-0687Ms, a new peptide bradykinin B2 receptor antagonist in a rat model of closed head trauma. Journal of Neurotrauma 16:1057–1065, 1999

    • Search Google Scholar
    • Export Citation
  • 29.

    Pruneau D, , Paquet JL, & Luccarini JM, et al: Pharmacological profile of LF 16-0687, a new potent non-peptide bradykinin B2 receptor antagonist. Immunopharmacology 43:187194, 1999 Pruneau D, Paquet JL, Luccarini JM, et al: Pharmacological profile of LF 16-0687, a new potent non-peptide bradykinin B2 receptor antagonist. Immunopharmacology 43:187–194, 1999

    • Search Google Scholar
    • Export Citation
  • 30.

    Raidoo DM, , Ramchurren N, & Naidoo Y, et al: Visualisation of bradykinin B2 receptors on human brain neurons. Immunopharmacology 33:104107, 1996 Raidoo DM, Ramchurren N, Naidoo Y, et al: Visualisation of bradykinin B2 receptors on human brain neurons. Immunopharmacology 33:104–107, 1996

    • Search Google Scholar
    • Export Citation
  • 31.

    Regoli D, , Allogho SN, & Rizzi A, et al: Bradykinin receptors and their antagonists. Eur J Pharmacol 348:110, 1998 Regoli D, Allogho SN, Rizzi A, et al: Bradykinin receptors and their antagonists. Eur J Pharmacol 348:1–10, 1998

    • Search Google Scholar
    • Export Citation
  • 32.

    Relton JK, , Beckey VE, & Hanson WL, et al: CP-0597, a selective bradykinin B2 receptor antagonist, inhibits brain injury in a rat model of reversible middle cerebral artery occlusion. Stroke 28:14301436, 1997 Relton JK, Beckey VE, Hanson WL, et al: CP-0597, a selective bradykinin B2 receptor antagonist, inhibits brain injury in a rat model of reversible middle cerebral artery occlusion. Stroke 28:1430–1436, 1997

    • Search Google Scholar
    • Export Citation
  • 33.

    Saransaari P, & Oja, SS: Excitatory amino acids evoke taurine release from cerebral cortex slices from adult and developing mice. Neuroscience 45:451459, 1991 Saransaari P, Oja, SS: Excitatory amino acids evoke taurine release from cerebral cortex slices from adult and developing mice. Neuroscience 45:451–459, 1991

    • Search Google Scholar
    • Export Citation
  • 34.

    Schachter M: Kallikreins (kininogenases)—a group of serine proteases with bioregulatory actions. Pharmacol Rev 31:117, 1979 Schachter M: Kallikreins (kininogenases)—a group of serine proteases with bioregulatory actions. Pharmacol Rev 31:1–17, 1979

    • Search Google Scholar
    • Export Citation
  • 35.

    Schneider GH, , Baethmann A, & Kempski O: Mechanisms of glial swelling induced by glutamate. Can J Physiol Pharmacol 70:S334S343, 1993 Schneider GH, Baethmann A, Kempski O: Mechanisms of glial swelling induced by glutamate. Can J Physiol Pharmacol 70:S334–S343, 1993

    • Search Google Scholar
    • Export Citation
  • 36.

    Stover JF, , Lowitzsch K, & Kempski OS: Cerebrospinal fluid hypoxanthine, xanthine and uric acid levels may reflect glutamate-mediated excitotoxicity in different neurological diseases. Neurosci Lett 238:2528, 1997 Stover JF, Lowitzsch K, Kempski OS: Cerebrospinal fluid hypoxanthine, xanthine and uric acid levels may reflect glutamate-mediated excitotoxicity in different neurological diseases. Neurosci Lett 238:25–28, 1997

    • Search Google Scholar
    • Export Citation
  • 37.

    Stover JF, , Morganti-Kossmann MC, & Lenzlinger PM, et al: Glutamate and taurine are increased in ventricular cerebrospinal fluid of severely brain-injured patients. J Neurotrauma 16:135142, 1999 Stover JF, Morganti-Kossmann MC, Lenzlinger PM, et al: Glutamate and taurine are increased in ventricular cerebrospinal fluid of severely brain-injured patients. J Neurotrauma 16:135–142, 1999

    • Search Google Scholar
    • Export Citation
  • 38.

    Stroop R, , Thomale UW, & Päuser S, et al: Magnetic resonance imaging studies with cluster algorithm for characterization of brain edema after controlled cortical impact injury (CCII). Acta Neurochir Suppl 71:303305, 1998 Stroop R, Thomale UW, Päuser S, et al: Magnetic resonance imaging studies with cluster algorithm for characterization of brain edema after controlled cortical impact injury (CCII). Acta Neurochir Suppl 71:303–305, 1998

    • Search Google Scholar
    • Export Citation
  • 39.

    Unterberg A, & Baethmann AJ: The kallikrein-kinin system as mediator in vasogenic brain edema. Part 1: Cerebral exposure to bradykinin and plasma. J Neurosurg 61:8796, 1984 Unterberg A, Baethmann AJ: The kallikrein-kinin system as mediator in vasogenic brain edema. Part 1: Cerebral exposure to bradykinin and plasma. J Neurosurg 61:87–96, 1984

    • Search Google Scholar
    • Export Citation
  • 40.

    Unterberg A, , Dautermann C, & Baethmann A, et al: The kallikrein-kinin system as mediator in vasogenic brain edema. Part 3: Inhibition of the kallikrein-kinin system in traumatic brain swelling. J Neurosurg 64:269276, 1986 Unterberg A, Dautermann C, Baethmann A, et al: The kallikrein-kinin system as mediator in vasogenic brain edema. Part 3: Inhibition of the kallikrein-kinin system in traumatic brain swelling. J Neurosurg 64:269–276, 1986

    • Search Google Scholar
    • Export Citation
  • 41.

    Unterberg A, , Wahl M, & Baethmann A: Effects of bradykinin on permeability and diameter of pial vessels in vivo. J Cereb Blood Flow Metab 4:574585, 1984 Unterberg A, Wahl M, Baethmann A: Effects of bradykinin on permeability and diameter of pial vessels in vivo. J Cereb Blood Flow Metab 4:574–585, 1984

    • Search Google Scholar
    • Export Citation
  • 42.

    Wahl M, , Unterberg A, & Baethmann A, et al: Mediators of blood-brain barrier dysfunction and formation of vasogenic brain edema. J Cereb Blood Flow Metab 8:621634, 1988 Wahl M, Unterberg A, Baethmann A, et al: Mediators of blood-brain barrier dysfunction and formation of vasogenic brain edema. J Cereb Blood Flow Metab 8:621–634, 1988

    • Search Google Scholar
    • Export Citation
  • 43.

    Wahl M, , Whalley ET, & Unterberg A, et al: Vasomotor and permeability effects of bradykinin in the cerebral microcirculation. Immunopharmacology 33:257263, 1996 Wahl M, Whalley ET, Unterberg A, et al: Vasomotor and permeability effects of bradykinin in the cerebral microcirculation. Immunopharmacology 33:257–263, 1996

    • Search Google Scholar
    • Export Citation
  • 44.

    Wahl M, , Young AR, & Edvinsson L, et al: Effects of bradykinin on pial arteries and arterioles in vitro and in situ. J Cereb Blood Flow Metab 3:231237, 1983 Wahl M, Young AR, Edvinsson L, et al: Effects of bradykinin on pial arteries and arterioles in vitro and in situ. J Cereb Blood Flow Metab 3:231–237, 1983

    • Search Google Scholar
    • Export Citation
  • 45.

    Whittle IR, , Piper IR, & Miller JD: The role of bradykinin in the etiology of vasogenic brain edema and perilesional brain dysfunction. Acta Neurochir 115:5359, 1992 Whittle IR, Piper IR, Miller JD: The role of bradykinin in the etiology of vasogenic brain edema and perilesional brain dysfunction. Acta Neurochir 115:53–59, 1992

    • Search Google Scholar
    • Export Citation
  • 46.

    Yager JY, , Brucklacher RM, & Vannucci RC: Cerebral energy metabolism during hypoxia-ischemia and early recovery in immature rats. Am J Physiol 262:H672H677, 1992 Yager JY, Brucklacher RM, Vannucci RC: Cerebral energy metabolism during hypoxia-ischemia and early recovery in immature rats. Am J Physiol 262:H672–H677, 1992

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 250 46 8
Full Text Views 122 0 0
PDF Downloads 64 0 0
EPUB Downloads 0 0 0