Hyperosmolar blood-brain barrier disruption in baboons: an in vivo study using positron emission tomography and rubidium-82

Restricted access

✓ Hyperosmolar blood-brain barrier (BBB) disruption remains controversial as an adjuvant therapy to increase delivery of water-soluble compounds to extracellular space in the brain in patients with malignant brain tumors. To understand the physiological effects of BBB disruption more clearly, the authors used positron emission tomography (PET) to study the time course of BBB permeability in response to the potassium analog rubidium-82 (82Rb, halflife 75 seconds) following BBB disruption in anesthetized adult baboons. Mannitol (25%) was injected into the carotid artery and PET scans were performed before and serially at 8- to 15-minute intervals after BBB disruption. The mean influx constant (K1), a measure of permeability-surface area product, in ipsilateral, mannitol-perfused mixed gray- and white-matter brain regions was 4.9 ± 2.4 µl/min/ml (± standard deviation) at baseline and increased more than 100% (ΔK1 = 9.4 ± 5.1 µl/min/ml, 18 baboons) in brain perfused by mannitol. The effect of BBB disruption on K1 correlated directly with the total amount of mannitol administered (p < 0.005). Vascular permeability returned to baseline with a halftime of 24.0 ± 14.3 minutes. The mean brain plasma volume rose by 0.57 ± 0.34 ml/100 ml in ipsilateral perfused brain following BBB disruption. This work provides a basis for the in vivo study of permeability changes induced by BBB disruption in human brain and brain tumors.

Article Information

Contributor Notes

Address for Dr. Zünkeler: The University of Iowa Hospitals and Clinics, Iowa City, Iowa.Address for Dr. Olson: The Emory Clinic, Atlanta, Georgia.Address for Dr. Blasberg: Memorial Sloan Kettering Cancer Center, New York, New York.Address reprint requests to: Edward H. Oldfield, M.D., National Institutes of Health, Surgical Neurology Branch, NINDS, Building 10, Room 5D37, Bethesda, Maryland 20892.
Headings
References
  • 1.

    Blasberg RHorowitz MStrong Jet al: Regional measurements of [14C]misonidazole distribution and blood flow in subcutaneous RT-9 experimental tumors. Cancer Res 45:169217011985Blasberg R Horowitz M Strong J et al: Regional measurements of [14C]misonidazole distribution and blood flow in subcutaneous RT-9 experimental tumors. Cancer Res 45:1692–1701 1985

    • Search Google Scholar
    • Export Citation
  • 2.

    Blasberg RGFenstermacher JDPatlak CS: Transport of alphaaminoisobutyric acid across brain capillary and cellular membranes. J Cereb Blood Flow Metab 3:8321983Blasberg RG Fenstermacher JD Patlak CS: Transport of alphaaminoisobutyric acid across brain capillary and cellular membranes. J Cereb Blood Flow Metab 3:8–32 1983

    • Search Google Scholar
    • Export Citation
  • 3.

    Blasberg RGGroothuis DMolnar P: A review of hyperosmotic blood-brain barrier disruption in seven experimental brain tumor models in Johansson BBOwman CWidner H (eds): Pathophysiology of the Blood-Brain Barrier. Amsterdam: Elsevier1990 pp 197220Blasberg RG Groothuis D Molnar P: A review of hyperosmotic blood-brain barrier disruption in seven experimental brain tumor models in Johansson BB Owman C Widner H (eds): Pathophysiology of the Blood-Brain Barrier. Amsterdam: Elsevier 1990 pp 197–220

    • Search Google Scholar
    • Export Citation
  • 4.

    Brightman MWHori MRapoport SIet al: Osmotic opening of tight junctions in cerebral endothelium. J Comp Neurol 152:3173261973Brightman MW Hori M Rapoport SI et al: Osmotic opening of tight junctions in cerebral endothelium. J Comp Neurol 152:317–326 1973

    • Search Google Scholar
    • Export Citation
  • 5.

    Brooks DJBeaney RPLammertsma AAet al: Quantitative measurement of blood-brain barrier permeability using rubidium-82 and positron emission tomography. J Cereb Blood Flow Metab 4:5355451984Brooks DJ Beaney RP Lammertsma AA et al: Quantitative measurement of blood-brain barrier permeability using rubidium-82 and positron emission tomography. J Cereb Blood Flow Metab 4:535–545 1984

    • Search Google Scholar
    • Export Citation
  • 6.

    Carson REBerg GWFinn RDet al: Tomographic measurement of LCBF with high resolution PET and H215O: comparison of methods. J Cereb Blood Flow Metab 7 (Suppl 1):S5781987 (Abstract)Carson RE Berg GW Finn RD et al: Tomographic measurement of LCBF with high resolution PET and H215O: comparison of methods. J Cereb Blood Flow Metab 7 (Suppl 1):S578 1987 (Abstract)

    • Search Google Scholar
    • Export Citation
  • 7.

    Cserr HFDePasquale MPatlak CS: Volume regulatory influx of electrolytes from plasma to brain during acute hyperosmolarity. Am J Physiol 253:F530F5371987Cserr HF DePasquale M Patlak CS: Volume regulatory influx of electrolytes from plasma to brain during acute hyperosmolarity. Am J Physiol 253:F530–F537 1987

    • Search Google Scholar
    • Export Citation
  • 8.

    Dhawan VJarden JOMoeller JRet al: Positron emission tomographic measurement of blood-to-brain and blood-totumour transport of 82Rb. II: Clinical data and validation of technique. Phys Med Biol 34:178517941989Dhawan V Jarden JO Moeller JR et al: Positron emission tomographic measurement of blood-to-brain and blood-totumour transport of 82Rb. II: Clinical data and validation of technique. Phys Med Biol 34:1785–1794 1989

    • Search Google Scholar
    • Export Citation
  • 9.

    Dhawan VPoltorak AMoeller JRet al: Positron emission tomographic measurement of blood-to-brain and blood-totumour transport of 82Rb. I: Error analysis and computer simulations. Phys Med Biol 34:177317841989Dhawan V Poltorak A Moeller JR et al: Positron emission tomographic measurement of blood-to-brain and blood-totumour transport of 82Rb. I: Error analysis and computer simulations. Phys Med Biol 34:1773–1784 1989

    • Search Google Scholar
    • Export Citation
  • 10.

    Ehrlich P: Das Sauerstoffbedürfnis des Organismus. Eine farbenanalytische Studie. Berlin: Verlag von August Hirschwald1885 pp 6970Ehrlich P: Das Sauerstoffbedürfnis des Organismus. Eine farbenanalytische Studie. Berlin: Verlag von August Hirschwald 1885 pp 69–70

    • Search Google Scholar
    • Export Citation
  • 11.

    Fishman RA: Editorial: Is there a therapeutic role for osmotic breaching of the blood—brain barrier? Ann Neurol 22:2982991987Fishman RA: Editorial: Is there a therapeutic role for osmotic breaching of the blood—brain barrier? Ann Neurol 22:298–299 1987

    • Search Google Scholar
    • Export Citation
  • 12.

    Goldstein GW: A cellular model of the blood-brain barrier. Ann NY Acad Sci 529:31391988Goldstein GW: A cellular model of the blood-brain barrier. Ann NY Acad Sci 529:31–39 1988

    • Search Google Scholar
    • Export Citation
  • 13.

    Groothuis DRWarnke PCMolnar Pet al: Effect of hyperosmotic blood-brain barrier disruption on transcapillary transport in canine brain tumors. J Neurosurg 72:4414491990Groothuis DR Warnke PC Molnar P et al: Effect of hyperosmotic blood-brain barrier disruption on transcapillary transport in canine brain tumors. J Neurosurg 72:441–449 1990

    • Search Google Scholar
    • Export Citation
  • 14.

    Hiesinger EMVoorhies RMBasler GAet al: Opening the blood—brain and blood—tumor barriers in experimental rat brain tumors: the effect of intracarotid hyperosmolar mannitol on capillary permeability and blood flow. Ann Neurol 19:50591986Hiesinger EM Voorhies RM Basler GA et al: Opening the blood—brain and blood—tumor barriers in experimental rat brain tumors: the effect of intracarotid hyperosmolar mannitol on capillary permeability and blood flow. Ann Neurol 19:50–59 1986

    • Search Google Scholar
    • Export Citation
  • 15.

    Jarden JODhawan VPoltorak Aet al: Positron emission tomographic measurement of blood-to-brain and blood-to-tumor transport of 82Rb: the effect of dexamethasone and whole brain radiation therapy. Ann Neurol 18:6366461985Jarden JO Dhawan V Poltorak A et al: Positron emission tomographic measurement of blood-to-brain and blood-to-tumor transport of 82Rb: the effect of dexamethasone and whole brain radiation therapy. Ann Neurol 18:636–646 1985

    • Search Google Scholar
    • Export Citation
  • 16.

    Karnovsky MJ: The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol 35:2132361967Karnovsky MJ: The ultrastructural basis of capillary permeability studied with peroxidase as a tracer. J Cell Biol 35:213–236 1967

    • Search Google Scholar
    • Export Citation
  • 17.

    Lammertsma AABrooks DJFrackowiak RSJet al: A method to quantitate the fractional extraction of rubidium-82 across the blood-brain barrier using positron emission tomography. J Cereb Blood Flow Metab 4:5235431984Lammertsma AA Brooks DJ Frackowiak RSJ et al: A method to quantitate the fractional extraction of rubidium-82 across the blood-brain barrier using positron emission tomography. J Cereb Blood Flow Metab 4:523–543 1984

    • Search Google Scholar
    • Export Citation
  • 18.

    Nakagawa HGroothuis DBlasberg RG: The effect of graded hypertonic intracarotid infusions on drug delivery to experimental RG-2 gliomas. Neurology 34:157115811984Nakagawa H Groothuis D Blasberg RG: The effect of graded hypertonic intracarotid infusions on drug delivery to experimental RG-2 gliomas. Neurology 34:1571–1581 1984

    • Search Google Scholar
    • Export Citation
  • 19.

    Nakagawa HGroothuis DROwens ESet al: Dexamethasone effects on [125I]albumin distribution in experimental RG-2 gliomas and adjacent brain. J Cereb Blood Flow Metab 7:6877011987Nakagawa H Groothuis DR Owens ES et al: Dexamethasone effects on [125I]albumin distribution in experimental RG-2 gliomas and adjacent brain. J Cereb Blood Flow Metab 7:687–701 1987

    • Search Google Scholar
    • Export Citation
  • 20.

    Neuwelt EA: Reversible osmotic blood-brain barrier disruption in humans: implications for the chemotherapy of malignant brain tumors. Neurosurgery 7:2041980 (Letter)Neuwelt EA: Reversible osmotic blood-brain barrier disruption in humans: implications for the chemotherapy of malignant brain tumors. Neurosurgery 7:204 1980 (Letter)

    • Search Google Scholar
    • Export Citation
  • 21.

    Neuwelt EABalaban EDiehl Jet al: Successful therapy of primary central nervous system lymphomas with chemotherapy after osmotic blood-brain barrier opening. Neurosurgery 12:6626711983Neuwelt EA Balaban E Diehl J et al: Successful therapy of primary central nervous system lymphomas with chemotherapy after osmotic blood-brain barrier opening. Neurosurgery 12:662–671 1983

    • Search Google Scholar
    • Export Citation
  • 22.

    Neuwelt EADiehl JTVu LHet al: Monitoring of methotrexate delivery in patients with malignant brain tumors after osmotic blood-brain barrier disruption. Ann Intern Med 94:4494541981Neuwelt EA Diehl JT Vu LH et al: Monitoring of methotrexate delivery in patients with malignant brain tumors after osmotic blood-brain barrier disruption. Ann Intern Med 94:449–454 1981

    • Search Google Scholar
    • Export Citation
  • 23.

    Neuwelt EAFrenkel EP: Is there a therapeutic role for blood-brain barrier disruption? Ann Intern Med 93:1371391980 (Editorial)Neuwelt EA Frenkel EP: Is there a therapeutic role for blood-brain barrier disruption? Ann Intern Med 93:137–139 1980 (Editorial)

    • Search Google Scholar
    • Export Citation
  • 24.

    Neuwelt EAFrenkel EPDiehl Jet al: Reversible osmotic blood-brain barrier disruption in humans: implications for the chemotherapy of malignant brain tumors. Neurosurgery 7:44521980Neuwelt EA Frenkel EP Diehl J et al: Reversible osmotic blood-brain barrier disruption in humans: implications for the chemotherapy of malignant brain tumors. Neurosurgery 7:44–52 1980

    • Search Google Scholar
    • Export Citation
  • 25.

    Neuwelt EAFrenkel EPRapoport Set al: Effect of osmotic blood-brain barrier disruption on methotrexate pharmacokinetics in the dog. Neurosurgery 7:36431980Neuwelt EA Frenkel EP Rapoport S et al: Effect of osmotic blood-brain barrier disruption on methotrexate pharmacokinetics in the dog. Neurosurgery 7:36–43 1980

    • Search Google Scholar
    • Export Citation
  • 26.

    Neuwelt EAHowieson JFrenkel EPet al: Therapeutic efficacy of multiagent chemotherapy with drug delivery enhancement by blood-brain barrier modification in glioblastoma. Neurosurgery 4:5735821986Neuwelt EA Howieson J Frenkel EP et al: Therapeutic efficacy of multiagent chemotherapy with drug delivery enhancement by blood-brain barrier modification in glioblastoma. Neurosurgery 4:573–582 1986

    • Search Google Scholar
    • Export Citation
  • 27.

    Neuwelt EAMaravilla KRFrenkel EPet al: Use of enhanced computerized tomography to evaluate osmotic blood-brain barrier disruption. Neurosurgery 6:49561980Neuwelt EA Maravilla KR Frenkel EP et al: Use of enhanced computerized tomography to evaluate osmotic blood-brain barrier disruption. Neurosurgery 6:49–56 1980

    • Search Google Scholar
    • Export Citation
  • 28.

    Neuwelt EARapoport SI: Modification of the blood-brain barrier in the chemotherapy of malignant brain tumors. Fed Proc 43:2142191984Neuwelt EA Rapoport SI: Modification of the blood-brain barrier in the chemotherapy of malignant brain tumors. Fed Proc 43:214–219 1984

    • Search Google Scholar
    • Export Citation
  • 29.

    Neuwelt EASpecht HDHowieson Jet al: Osmotic blood-brain barrier modification: clinical documentation by enhanced CT scanning and/or radionuclide brain scanning. AJR 141:8298351983Neuwelt EA Specht HD Howieson J et al: Osmotic blood-brain barrier modification: clinical documentation by enhanced CT scanning and/or radionuclide brain scanning. AJR 141:829–835 1983

    • Search Google Scholar
    • Export Citation
  • 30.

    Phelps MEHoffman EJHuang SCet al: Effect of positron range on spatial resolution. J Nucl Med 16:6496521975Phelps ME Hoffman EJ Huang SC et al: Effect of positron range on spatial resolution. J Nucl Med 16:649–652 1975

    • Search Google Scholar
    • Export Citation
  • 31.

    Rapoport SI: Opening of the blood-brain barrier by acute hypertension. Exp Neurol 52:4674791976Rapoport SI: Opening of the blood-brain barrier by acute hypertension. Exp Neurol 52:467–479 1976

    • Search Google Scholar
    • Export Citation
  • 32.

    Rapoport SI: Osmotic opening of the blood-brain barrier. Ann Neurol 24:6776791988Rapoport SI: Osmotic opening of the blood-brain barrier. Ann Neurol 24:677–679 1988

    • Search Google Scholar
    • Export Citation
  • 33.

    Rapoport SIFredericks WROhno Ket al: Quantitative aspects of reversible osmotic opening of the blood-brain barrier. Am J Physiol 238:R421R4311980Rapoport SI Fredericks WR Ohno K et al: Quantitative aspects of reversible osmotic opening of the blood-brain barrier. Am J Physiol 238:R421–R431 1980

    • Search Google Scholar
    • Export Citation
  • 34.

    Rapoport SIHori MKlatzo I: Testing of a hypothesis for osmotic opening of the blood-brain barrier. Am J Physiol 223:3233311972Rapoport SI Hori M Klatzo I: Testing of a hypothesis for osmotic opening of the blood-brain barrier. Am J Physiol 223:323–331 1972

    • Search Google Scholar
    • Export Citation
  • 35.

    Shapiro WRVoorhies RMHiesiger EMet al: Pharmacokinetics of tumor cell exposure to [14C]methotrexate after intracarotid administration without and with hyperosmotic opening of the blood-brain and blood-tumor barriers in rat brain tumors: a quantitative autoradiographic study. Cancer Res 48:6947011988Shapiro WR Voorhies RM Hiesiger EM et al: Pharmacokinetics of tumor cell exposure to [14C]methotrexate after intracarotid administration without and with hyperosmotic opening of the blood-brain and blood-tumor barriers in rat brain tumors: a quantitative autoradiographic study. Cancer Res 48:694–701 1988

    • Search Google Scholar
    • Export Citation
  • 36.

    Warnke PCPhillips ABernstein LPet al: The somatosensory evoked potential as a noninvasive method to determine flow rates for hyperosmotic disruption of the blood-brain barrier. Neurosurgery 25:4054111989Warnke PC Phillips A Bernstein LP et al: The somatosensory evoked potential as a noninvasive method to determine flow rates for hyperosmotic disruption of the blood-brain barrier. Neurosurgery 25:405–411 1989

    • Search Google Scholar
    • Export Citation
  • 37.

    Yano YCahoon JLBudinger TF: A precision flow controlled Rb-82 generator for bolus or constant-infusion studies of the heart and brain. J Nucl Med 22:100610101981Yano Y Cahoon JL Budinger TF: A precision flow controlled Rb-82 generator for bolus or constant-infusion studies of the heart and brain. J Nucl Med 22:1006–1010 1981

    • Search Google Scholar
    • Export Citation
  • 38.

    Yen CKBudinger TF: Evaluation of blood-brain barrier permeability changes in rhesus monkeys and man using 82Rb and positron emission tomography. J Comput Assist Tomogr 5:7927991981Yen CK Budinger TF: Evaluation of blood-brain barrier permeability changes in rhesus monkeys and man using 82Rb and positron emission tomography. J Comput Assist Tomogr 5:792–799 1981

    • Search Google Scholar
    • Export Citation
TrendMD
Cited By
Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 153 100 23
Full Text Views 158 4 0
PDF Downloads 49 3 0
EPUB Downloads 0 0 0
PubMed
Google Scholar