Comparative study of transcranial color duplex sonography and transcranial Doppler sonography in adults

Restricted access

✓ To determine whether the frequency shift recorded in basal cerebral arteries corresponds to “true” flow velocities, a prospective comparative study of transcranial color duplex sonography (TCCD) and transcranial Doppler sonography (TCD) was performed. A 2.0-MHz transducer of a computerized TCCD system and a TCD device were used. The middle cerebral artery (MCA) and anterior cerebral artery (ACA) were examined by TCCD in 49 healthy volunteers (mean age 35 ± 12 years). In 45 of the same volunteers a comparative TCD examination was possible. The studies were carried out blindly by different examiners at separate appointments. Peak systolic flow velocity, end-diastolic maximum flow velocity, time-averaged maximum flow velocity, and the pulsatility index were measured by both techniques. Additionally, for TCCD, time-averaged flow velocity was assessed, the resistance index and a spectral broadening index were calculated, and the energy output required for reliable measurement was analyzed.

The TCCD signals were recorded in 98% of both MCA's and ACA's; with TCD, signals were recorded in 98% of MCA's and 87% of ACA's. Although in both vessels the angle-corrected peak systolic and time-averaged maximum velocities were approximately 10% to 15% higher in TCCD than in TCD measurements, correlation of flow velocities between both techniques was significant (p < 0.0001); differences between sides and age-dependency of flow velocities corresponded as well. In a reproducibility study, TCCD was repeated in 27 subjects by a third examiner with significant correlation (p < 0.0001) of both TCCD examinations.

It is concluded that the advantage of TCCD is associated more with a qualitative aspect than a quantitative one. The additional visual dimension of TCCD can open new diagnostic possibilities in cerebrovascular disorders.

Article Information

Address for Dr. Buchholz: Department of Neurosurgery, Surgical Clinic, University of Tübingen, Hoppe-Seylerstrasse 3, D-7400 Tübingen, Germany.Address for Mr. Walter: Burgholzweg 136, D-7400 Tübingen, Germany.Address reprint requests to: Martin Schöning, M.D., Division of Neuropediatrics, Childrens' Hospital of the University of Tübingen, Rümelinstrasse 23, D-7400 Tübingen, Germany.

© AANS, except where prohibited by US copyright law.

Headings

Figures

  • View in gallery

    Upper Left: Transcranial color duplex sonogram of the right middle cerebral artery (MCA) in a 27-year-old man, axial section of the brain with enlargement of the central region, showing the butterfly-like figure of the midbrain and the color-coded basal cerebral arteries. The right MCA and right posterior cerebral artery (PCA) are displayed in red, and the origin of the left MCA and PCA is displayed in blue. The velocity range of the color Doppler ultrasound scale is set at 69 cm/sec in both directions. The sample volume (two horizontal bars) is situated in the right MCA. The angle between the Doppler ultrasound beam (dotted line) and the course of the vessel (two solid lines) is adjusted (30°). Lower Left: Doppler ultrasound waveform of the corresponding MCA flow pattern. Right: Schematic representation of the color Doppler ultrasound image.

  • View in gallery

    Upper Left: Transcranial color duplex sonogram of the right anterior cerebral artery (ACA) in a 27-year-old man showing enlargement of the central region of the brain. The right ACA is displayed in blue, and the right middle cerebral artery (MCA) is displayed in red. The velocity range of the color Doppler ultrasound scale is set at 69 cm/sec in both directions. The sample volume (two horizontal lines) is situated in the middle of the A] segment of the ACA. Angle correction (8%) is not yet applied in order to allow better illustration of the vessel's course. The dotted line indicates the Doppler ultrasound beam. Lower Left: Doppler ultrasound waveform of the corresponding ACA flow pattern. Right: Schematic representation of the color Doppler sonogram image. M = midbrain; 1 = the right ACA; 2 = the right MCA.

  • View in gallery

    Upper Left: Transcranial color duplex sonogram of the A1 segment of the right anterior cerebral artery (ACA) demonstrating flow reversal in this vessel. Enlargement of the central region of the brain shows the midbrain (M) and the meandering line of the anterior part of the circle of Willis. OCC = occipital; FR = frontal. The velocity range of the color Doppler ultrasound scale is reduced to 40 cm/sec in both directions in order to allow detection of the right ACA with low flow velocity. Therefore, the aliasing effect occurs within the right middle cerebral artery (MCA) and left ACA (color wrapping). The sample volume (two horizontal lines) is situated in the right ACA. The dotted line indicates the Doppler ultrasound beam. Lower Left: Doppler ultrasound waveform of the corresponding right ACA flow pattern with flow toward the transducer. The time-averaged maximum velocity (TAVmax) is 38 cm/sec. Orthograde flow direction in all other basal cerebral arteries, including the internal carotid arteries, has been ascertained; TAVmax in the left ACA is 71 cm/sec, in the left MCA is 83 cm/sec, and in the right MCA is 85 cm/sec (not shown). Right: Schematic representation of the color Doppler ultrasound image.

  • View in gallery

    Graphs showing the reproducibility of angle-corrected flow velocity measurements in the middle cerebral artery (MCA) and in the anterior cerebral artery (ACA). The time-averaged maximum flow velocity (TAMX) of each artery was measured by transcranial color duplex sonography (TCCD) and recorded by two examiners at separate appointments. The line of identity is indicated in both graphs.

  • View in gallery

    Graphs comparing the time-averaged maximum velocities (TAMX) measured by both transcranial Doppler sonography (TCD) and transcranial color duplex sonography (TCCD) in middle cerebral arteries (MCA's, upper) and anterior cerebral arteries (ACA's, lower). The ordinate of the graphs at left represent angle-corrected TCCD values, and that of the graphs at right represent TCCD values without angle correction (TCCD*). The line of identity is indicated in each graph.

References

  • 1.

    Aaslid R: Transcranial Doppler examination techniques in Aaslid R (ed): Transcranial Doppler Sonography. Wien: Springer-Verlag1986 pp 3959Aaslid R: Transcranial Doppler examination techniques in Aaslid R (ed): Transcranial Doppler Sonography. Wien: Springer-Verlag 1986 pp 39–59

    • Search Google Scholar
    • Export Citation
  • 2.

    Aaslid RMarkwalder TMNornes H: Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57:7697741982Aaslid R Markwalder TM Nornes H: Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg 57:769–774 1982

    • Search Google Scholar
    • Export Citation
  • 3.

    Arnolds BJvon Reutern GM: Transcranial Doppler sonography. Examination technique and normal reference values. Ultrasound Med Biol 12:1151231986Arnolds BJ von Reutern GM: Transcranial Doppler sonography. Examination technique and normal reference values. Ultrasound Med Biol 12:115–123 1986

    • Search Google Scholar
    • Export Citation
  • 4.

    Becker GGreiner KKaune Bet al: Diagnosis and monitoring of subarachnoid hemorrhage by transcranial color-coded real-time sonography. Neurosurgery 28:8148201991Becker G Greiner K Kaune B et al: Diagnosis and monitoring of subarachnoid hemorrhage by transcranial color-coded real-time sonography. Neurosurgery 28:814–820 1991

    • Search Google Scholar
    • Export Citation
  • 5.

    Becker GWinkler JBogdahn U: Die transkranielle farbkodierte Real-Time-Sonographie des Erwachsenen. Teil 1: Normalbefunde und zerebrovaskuläre Ischämien. Ultraschall Med 12:74791991Becker G Winkler J Bogdahn U: Die transkranielle farbkodierte Real-Time-Sonographie des Erwachsenen. Teil 1: Normalbefunde und zerebrovaskuläre Ischämien. Ultraschall Med 12:74–79 1991

    • Search Google Scholar
    • Export Citation
  • 6.

    Becker GMWinkler JHoffmann Eet al: Imaging of cerebral arterio-venous malformations by transcranial colour-coded real-time sonography. Neuroradiology 32:2802881990Becker GM Winkler J Hoffmann E et al: Imaging of cerebral arterio-venous malformations by transcranial colour-coded real-time sonography. Neuroradiology 32:280–288 1990

    • Search Google Scholar
    • Export Citation
  • 7.

    Bode HWais U: Age dependence of flow velocities in basal cerebral arteries. Arch Dis Child 63:6066111988Bode H Wais U: Age dependence of flow velocities in basal cerebral arteries. Arch Dis Child 63:606–611 1988

    • Search Google Scholar
    • Export Citation
  • 8.

    Bogdahn UBecker GWinkler Jet al: Transcranial color-coded real-time sonography in adults. Stroke 21:168016881990Bogdahn U Becker G Winkler J et al: Transcranial color-coded real-time sonography in adults. Stroke 21:1680–1688 1990

    • Search Google Scholar
    • Export Citation
  • 9.

    Brass LMPavlakis SGDeVivo Det al: Transcranial Doppler measurements of the middle cerebral artery. Effect of hematocrit. Stroke 19:146614691988Brass LM Pavlakis SG DeVivo D et al: Transcranial Doppler measurements of the middle cerebral artery. Effect of hematocrit. Stroke 19:1466–1469 1988

    • Search Google Scholar
    • Export Citation
  • 10.

    Brouwers PJVriens EMMusbach Met al: Transcranial pulsed Doppler measurements of blood flow velocity in the middle cerebral artery: reference values at rest and during hyperventilation in healthy children and adolescents in relation to age and sex. Ultrasound Med Biol 16:181990Brouwers PJ Vriens EM Musbach M et al: Transcranial pulsed Doppler measurements of blood flow velocity in the middle cerebral artery: reference values at rest and during hyperventilation in healthy children and adolescents in relation to age and sex. Ultrasound Med Biol 16:1–8 1990

    • Search Google Scholar
    • Export Citation
  • 11.

    Douville YJohnston KWKassam M: Determination of the hemodynamic factors which influence the carotid Doppler spectral broadening. Ultrasound Med Biol 11:4174231985Douville Y Johnston KW Kassam M: Determination of the hemodynamic factors which influence the carotid Doppler spectral broadening. Ultrasound Med Biol 11:417–423 1985

    • Search Google Scholar
    • Export Citation
  • 12.

    Furuhata H: New evolution of transcranial tomography (TCT) and transcranial color Doppler tomography (TCDT). Neurosonology 2:8151989Furuhata H: New evolution of transcranial tomography (TCT) and transcranial color Doppler tomography (TCDT). Neurosonology 2:8–15 1989

    • Search Google Scholar
    • Export Citation
  • 13.

    Gosling RGKing DH: Continuous wave ultrasound as an alternative and complement to X-rays in vascular examinations in Reneman RS (ed): Cardiovascular Applications of Ultrasound. Amsterdam: North-Holland1974 pp 266282Gosling RG King DH: Continuous wave ultrasound as an alternative and complement to X-rays in vascular examinations in Reneman RS (ed): Cardiovascular Applications of Ultrasound. Amsterdam: North-Holland 1974 pp 266–282

    • Search Google Scholar
    • Export Citation
  • 14.

    Grolimund PSeiler RW: Age dependence of the flow velocity in the basal cerebral arteries — a transcranial Doppler ultrasound study. Ultrasound Med Biol 14:1911981988Grolimund P Seiler RW: Age dependence of the flow velocity in the basal cerebral arteries — a transcranial Doppler ultrasound study. Ultrasound Med Biol 14:191–198 1988

    • Search Google Scholar
    • Export Citation
  • 15.

    Halsey JH: Effect of emitted power on waveform intensity in transcranial Doppler. Stroke 21:157315781990Halsey JH: Effect of emitted power on waveform intensity in transcranial Doppler. Stroke 21:1573–1578 1990

    • Search Google Scholar
    • Export Citation
  • 16.

    Harders AGilsbach J: Transcranial Doppler sonography and its application in extracranial-intracranial bypass surgery. Neurol Res 7:1291411985Harders A Gilsbach J: Transcranial Doppler sonography and its application in extracranial-intracranial bypass surgery. Neurol Res 7:129–141 1985

    • Search Google Scholar
    • Export Citation
  • 17.

    Hashimoto BEHattrick CW: New method of adult transcranial Doppler. J Ultrasound Med 10:3493531991Hashimoto BE Hattrick CW: New method of adult transcranial Doppler. J Ultrasound Med 10:349–353 1991

    • Search Google Scholar
    • Export Citation
  • 18.

    Hennerici MRautenberg WSitzer Get al: Transcranial Doppler ultrasound for the assessment of intracranial arterial flow velocity — part 1. Examination technique and normal values. Surg Neurol 27:4394481987Hennerici M Rautenberg W Sitzer G et al: Transcranial Doppler ultrasound for the assessment of intracranial arterial flow velocity — part 1. Examination technique and normal values. Surg Neurol 27:439–448 1987

    • Search Google Scholar
    • Export Citation
  • 19.

    Markwalder TMGrolimund PSeiler RWet al: Dependency of blood flow velocity in the middle cerebral artery on end-tidal carbon dioxide partial pressure — a transcranial ultrasound Doppler study. J Cereb Blood Flow Metab 4:3683721984Markwalder TM Grolimund P Seiler RW et al: Dependency of blood flow velocity in the middle cerebral artery on end-tidal carbon dioxide partial pressure — a transcranial ultrasound Doppler study. J Cereb Blood Flow Metab 4:368–372 1984

    • Search Google Scholar
    • Export Citation
  • 20.

    Pourcelot L: Applications cliniques de l'examen Doppler transcutane in Peronneau P (ed): Velocimetre Ultrasonore Doppler. Paris: Inserm1979 p 213Pourcelot L: Applications cliniques de l'examen Doppler transcutane in Peronneau P (ed): Velocimetre Ultrasonore Doppler. Paris: Inserm 1979 p 213

    • Search Google Scholar
    • Export Citation
  • 21.

    Ringelstein EBKahlscheuer BNiggemeyer Eet al: Transcranial Doppler sonography: anatomical landmarks and normal velocity values. Ultrasound Med Biol 16:7457611990Ringelstein EB Kahlscheuer B Niggemeyer E et al: Transcranial Doppler sonography: anatomical landmarks and normal velocity values. Ultrasound Med Biol 16:745–761 1990

    • Search Google Scholar
    • Export Citation
  • 22.

    Schöning MGrunert D: Clinical application of transcranial sonography, duplex-sonography and color Doppler sonography in childhood. Artères et Veines 9:6987031990Schöning M Grunert D: Clinical application of transcranial sonography duplex-sonography and color Doppler sonography in childhood. Artères et Veines 9:698–703 1990

    • Search Google Scholar
    • Export Citation
  • 23.

    Schöning MGrunert DStier B: Transkranielle Duplexsonographie durch den intakten Knochen: Ein neues diagnostisches Verfahren. Ultraschall Med 10:66711989Schöning M Grunert D Stier B: Transkranielle Duplexsonographie durch den intakten Knochen: Ein neues diagnostisches Verfahren. Ultraschall Med 10:66–71 1989

    • Search Google Scholar
    • Export Citation
  • 24.

    Schöning MGrunert DStier B: Transkranielle Real-Time-Sonographie bei Kindern und Jugendlichen, Ultraschallanatomie des Gehirns. Ultraschall Med 9:2862921988Schöning M Grunert D Stier B: Transkranielle Real-Time-Sonographie bei Kindern und Jugendlichen Ultraschallanatomie des Gehirns. Ultraschall Med 9:286–292 1988

    • Search Google Scholar
    • Export Citation
  • 25.

    Schöning MGrunert DStier B: Transkranielle Sonographie und Duplexsonographie bei Kindern mit Zysten und Tumoren im Bereich der Hirnbasis. Ultraschall Med 10:2452491989Schöning M Grunert D Stier B: Transkranielle Sonographie und Duplexsonographie bei Kindern mit Zysten und Tumoren im Bereich der Hirnbasis. Ultraschall Med 10:245–249 1989

    • Search Google Scholar
    • Export Citation
  • 26.

    Schöning MWalter J: Evaluation of the vertebrobasilar-posterior system by transcranial color duplex sonography in adults. Stroke 23:128012861992Schöning M Walter J: Evaluation of the vertebrobasilar-posterior system by transcranial color duplex sonography in adults. Stroke 23:1280–1286 1992

    • Search Google Scholar
    • Export Citation
  • 27.

    Sorteberg WLangmoen IALindegaard KFet al: Side-to-side differences and day-to-day variations of transcranial Doppler parameters in normal subjects. J Ultrasound Med 9:4034091990Sorteberg W Langmoen IA Lindegaard KF et al: Side-to-side differences and day-to-day variations of transcranial Doppler parameters in normal subjects. J Ultrasound Med 9:403–409 1990

    • Search Google Scholar
    • Export Citation
  • 28.

    Tsuchiya TYasaka MYamaguchi Tet al: Imaging of the basal cerebral arteries and measurement of blood velocitv in adults by using transcranial real-time color flow Doppler sonography. AJNR 12:4975021991Tsuchiya T Yasaka M Yamaguchi T et al: Imaging of the basal cerebral arteries and measurement of blood velocitv in adults by using transcranial real-time color flow Doppler sonography. AJNR 12:497–502 1991

    • Search Google Scholar
    • Export Citation
  • 29.

    Vriens EMKraaier VMusbach Met al: Transcranial pulsed Doppler measurements of blood velocity in the middle cerebral artery: reference values at rest and during hyperventilation in healthy volunteers in relation to age and sex. Ultrasound Med Biol 15:181989Vriens EM Kraaier V Musbach M et al: Transcranial pulsed Doppler measurements of blood velocity in the middle cerebral artery: reference values at rest and during hyperventilation in healthy volunteers in relation to age and sex. Ultrasound Med Biol 15:1–8 1989

    • Search Google Scholar
    • Export Citation
  • 30.

    Wada TKodaira KFujishiro Ket al: Quantitative measurement of middle cerebral artery flow velocity using transcranial color Doppler tomography. Artères et Veines 9:6826851990Wada T Kodaira K Fujishiro K et al: Quantitative measurement of middle cerebral artery flow velocity using transcranial color Doppler tomography. Artères et Veines 9:682–685 1990

    • Search Google Scholar
    • Export Citation

TrendMD

Cited By

Metrics

Metrics

All Time Past Year Past 30 Days
Abstract Views 137 137 8
Full Text Views 211 211 2
PDF Downloads 101 101 1
EPUB Downloads 0 0 0

PubMed

Google Scholar