Idiopathic Parkinson’s disease and chronic pain in the era of deep brain stimulation: a systematic review and meta-analysis

Oliver FloutyDepartment of Neurosurgery, University of South Florida, Tampa, Florida;

Search for other papers by Oliver Flouty in
Current site
Google Scholar
PubMed
Close
 MD
,
Kazuaki YamamotoDivision of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada;

Search for other papers by Kazuaki Yamamoto in
Current site
Google Scholar
PubMed
Close
 MD
,
Jurgen GermannDivision of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada;

Search for other papers by Jurgen Germann in
Current site
Google Scholar
PubMed
Close
 PhD
,
Irene E. HarmsenDivision of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada;

Search for other papers by Irene E. Harmsen in
Current site
Google Scholar
PubMed
Close
 PhD
,
Hyun Ho JungDivision of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada;
Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea;

Search for other papers by Hyun Ho Jung in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Cletus CheyuoDivision of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada;

Search for other papers by Cletus Cheyuo in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Ajmal ZemmarDivision of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada;
Department of Neurosurgery, University of Louisville, School of Medicine, Louisville, Kentucky; and
Department of Neurosurgery, Henan Provincial People’s Hospital, Henan University People’s Hospital, Henan University School of Medicine, Zhengzhou, China

Search for other papers by Ajmal Zemmar in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Vanessa MilanoDivision of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada;

Search for other papers by Vanessa Milano in
Current site
Google Scholar
PubMed
Close
 MD
,
Can SaricaDivision of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada;

Search for other papers by Can Sarica in
Current site
Google Scholar
PubMed
Close
 MD
, and
Andres M. LozanoDivision of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada;

Search for other papers by Andres M. Lozano in
Current site
Google Scholar
PubMed
Close
 MD, PhD
View More View Less
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $525.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $525.00
USD  $624.00
Print or Print + Online Sign in

OBJECTIVE

Pain is the most common nonmotor symptom of Parkinson’s disease (PD) and is often undertreated. Deep brain stimulation (DBS) effectively mitigates the motor symptoms of this multisystem neurodegenerative disease; however, its therapeutic effect on nonmotor symptoms, especially pain, remains inconclusive. While there is a critical need to help this large PD patient population, guidelines for managing this significant disease burden are absent. Herein, the authors systematically reviewed the literature and conducted a meta-analysis to study the influence of traditional (subthalamic nucleus [STN] and globus pallidus internus [GPi]) DBS on chronic pain in patients with PD.

METHODS

The authors performed a systematic review of the literature and a meta-analysis following PRISMA guidelines. Risk of bias was assessed using the levels of evidence established by the Oxford Centre for Evidence-Based Medicine. Inclusion criteria were articles written in English, published in a peer-reviewed scholarly journal, and about studies conducting an intervention for PD-related pain in no fewer than 5 subjects.

RESULTS

Twenty-six studies were identified and included in this meta-analysis. Significant interstudy heterogeneity was detected (Cochran’s Q test p < 0.05), supporting the use of the random-effects model. The random-effects model estimated the effect size of DBS for the treatment of idiopathic pain as 1.31 (95% CI 0.84–1.79). The DBS-on intervention improved pain scores by 40% as compared to the control state (preoperative baseline or DBS off).

CONCLUSIONS

The results indicated that traditional STN and GPi DBS can have a favorable impact on pain control and improve pain scores by 40% from baseline in PD patients experiencing chronic pain. Further trials are needed to identify the subtype of PD patients whose pain benefits from DBS and to identify the mechanisms by which DBS improves pain in PD patients.

ABBREVIATIONS

DBS = deep brain stimulation; GPi = globus pallidus internus; KPPS = King’s Parkinson’s Disease Pain Scale; MeSH = medical subject headings; NRS = numeric rating scale; PD = Parkinson’s disease; RCT = randomized controlled trial; STN = subthalamic nucleus; UPDRS = Unified Parkinson’s Disease Rating Scale; VAS = visual analog scale.

Supplementary Materials

    • Supplementary Table S1 (PDF 451 KB)
  • Collapse
  • Expand

Figure from Kim et al. (pp 1601–1609).

  • 1

    Marras C, Beck JC, Bower JH, et al. Prevalence of Parkinson’s disease across North America. NPJ Parkinsons Dis. 2018;4:21.

  • 2

    Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers. 2017;3:17013.

  • 3

    Young Blood MR, Ferro MM, Munhoz RP, Teive HA, Camargo CH. Classification and characteristics of pain associated with Parkinson’s disease. Parkinsons Dis. 2016;2016:6067132.

    • Search Google Scholar
    • Export Citation
  • 4

    Ha AD, Jankovic J. Pain in Parkinson’s disease. Mov Disord. 2012;27(4):485491.

  • 5

    Lee MA, Walker RW, Hildreth TJ, Prentice WM. A survey of pain in idiopathic Parkinson’s disease. J Pain Symptom Manage. 2006;32(5):462469.

  • 6

    Fil A, Cano-de-la-Cuerda R, Muñoz-Hellín E, Vela L, Ramiro-González M, Fernández-de-Las-Peñas C. Pain in Parkinson disease: a review of the literature. Parkinsonism Relat Disord. 2013;19(3):285294.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Beiske AG, Loge JH, Rønningen A, Svensson E. Pain in Parkinson’s disease: prevalence and characteristics. Pain. 2009;141(1-2):173177.

  • 8

    Valkovic P, Minar M, Singliarova H, et al. Pain in Parkinson’s disease: a cross-sectional study of its prevalence, types, and relationship to depression and quality of life. PLoS One. 2015;10(8):e0136541.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Rana A, Saeed U, Masroor MS, Yousuf MS, Siddiqui I. A cross-sectional study investigating clinical predictors and physical experiences of pain in Parkinson’s disease. Funct Neurol. 2013;28(4):297304.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    You HY, Wu L, Yang HT, Yang C, Ding XL. A Comparison of pain between Parkinson’s disease and multiple system atrophy: a clinical cross-sectional survey. Pain Res Manag. 2019;2019:3150306.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Rahman S, Griffin HJ, Quinn NP, Jahanshahi M. Quality of life in Parkinson’s disease: the relative importance of the symptoms. Mov Disord. 2008;23(10):14281434.

  • 12

    Quittenbaum BH, Grahn B. Quality of life and pain in Parkinson’s disease: a controlled cross-sectional study. Parkinsonism Relat Disord. 2004;10(3):129136.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Chaudhuri KR, Rizos A, Trenkwalder C, et al. King’s Parkinson’s disease pain scale, the first scale for pain in PD: an international validation. Mov Disord. 2015;30(12):16231631.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Broen MP, Braaksma MM, Patijn J, Weber WE. Prevalence of pain in Parkinson’s disease: a systematic review using the modified QUADAS tool. Mov Disord. 2012;27(4):480484.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Stein WM, Read S. Chronic pain in the setting of Parkinson’s disease and depression. J Pain Symptom Manage. 1997;14(4):255258.

  • 16

    Rana AQ, Qureshi ARM, Rahman N, Mohammed A, Sarfraz Z, Rana R. Disability from pain directly correlated with depression in Parkinson’s disease. Clin Neurol Neurosurg. 2017;160:14.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Khazen O, DiMarzio M, Platanitis K, et al. Sex-specific effects of subthalamic nucleus stimulation on pain in Parkinson’s disease. J Neurosurg. 2021;135(2):629636.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18

    Follett KA, Weaver FM, Stern M, et al. Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med. 2010;362(22):20772091.

  • 19

    Rizzone MG, Fasano A, Daniele A, et al. Long-term outcome of subthalamic nucleus DBS in Parkinson’s disease: from the advanced phase towards the late stage of the disease?. Parkinsonism Relat Disord. 2014;20(4):376381.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Marx RG, Wilson SM, Swiontkowski MF. Updating the assignment of levels of evidence. J Bone Joint Surg Am. 2015;97(1):12.

  • 21

    Cohen J. Statistical Power Analysis for the Behavioral Sciences. 2nd ed. L Erlbaum Associates;1988.

  • 22

    Viechtbauer W. Conducting meta-analyses in R with the metafor package. J Stat Softw. 2010;36(3):148.

  • 23

    Balduzzi S, Rücker G, Schwarzer G. How to perform a meta-analysis with R: a practical tutorial. Evid Based Ment Health. 2019;22(4):153160.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24

    Oshima H, Katayama Y, Morishita T, et al. Subthalamic nucleus stimulation for attenuation of pain related to Parkinson disease. J Neurosurg. 2012;116(1):99106.

  • 25

    Loher TJ, Burgunder JM, Weber S, Sommerhalder R, Krauss JK. Effect of chronic pallidal deep brain stimulation on off period dystonia and sensory symptoms in advanced Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2002;73(4):395399.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Jung YJ, Kim HJ, Jeon BS, Park H, Lee WW, Paek SH. An 8-year follow-up on the effect of subthalamic nucleus deep brain stimulation on pain in Parkinson disease. JAMA Neurol. 2015;72(5):504510.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Kim HJ, Paek SH, Kim JY, et al. Chronic subthalamic deep brain stimulation improves pain in Parkinson disease. J Neurol. 2008;255(12):18891894.

  • 28

    Diao Y, Bai Y, Hu T, et al. A Meta-analysis of the effect of subthalamic nucleus-deep brain stimulation in Parkinson’s disease-related pain. Front Hum Neurosci. 2021;15:688818.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Smith H, Gee L, Kumar V, et al. Deep brain stimulation significantly decreases disability from low back pain in patients with advanced Parkinson’s disease. Stereotact Funct Neurosurg. 2015;93(3):206211.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Pellaprat J, Ory-Magne F, Canivet C, et al. Deep brain stimulation of the subthalamic nucleus improves pain in Parkinson’s disease. Parkinsonism Relat Disord. 2014;20(6):662664.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Tinazzi M, Del Vesco C, Defazio G, et al. Abnormal processing of the nociceptive input in Parkinson’s disease: a study with CO2 laser evoked potentials. Pain. 2008;136(1-2):117124.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Tinazzi M, Recchia S, Simonetto S, et al. Muscular pain in Parkinson’s disease and nociceptive processing assessed with CO2 laser-evoked potentials. Mov Disord. 2010;25(2):213220.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Ertas M, Sagduyu A, Arac N, Uludag B, Ertekin C. Use of levodopa to relieve pain from painful symmetrical diabetic polyneuropathy. Pain. 1998;75(2-3):257259.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Kernbaum S, Hauchecorne J. Administration of levodopa for relief of herpes zoster pain. JAMA. 1981;246(2):132134.

  • 35

    Nixon DW. Letter: Use of L-dopa to relieve pain from bone metastases. N Engl J Med. 1975;292(12):647.

  • 36

    Domenici RA, Campos ACP, Maciel ST, et al. Parkinson’s disease and pain: modulation of nociceptive circuitry in a rat model of nigrostriatal lesion. Exp Neurol. 2019;315:7281.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37

    Granovsky Y, Schlesinger I, Fadel S, Erikh I, Sprecher E, Yarnitsky D. Asymmetric pain processing in Parkinson’s disease. Eur J Neurol. 2013;20(10):13751382.

  • 38

    Rughani A, Schwalb JM, Sidiropoulos C, et al. Congress of Neurological Surgeons systematic review and evidence-based guideline on subthalamic nucleus and globus pallidus internus deep brain stimulation for the treatment of patients with Parkinson’s disease: executive summary. Neurosurgery. 2018;82(6):753756.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Kurtis MM, Rajah T, Delgado LF, Dafsari HS. The effect of deep brain stimulation on the non-motor symptoms of Parkinson’s disease: a critical review of the current evidence. NPJ Parkinsons Dis. 2017;3:16024.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Sawilowsky S. New effect size rules of thumb. J Mod Appl Stat Methods. 2009;8(2):597599.

  • 41

    Witjas T, Kaphan E, Régis J, et al. Effects of chronic subthalamic stimulation on nonmotor fluctuations in Parkinson’s disease. Mov Disord. 2007;22(12):17291734.

  • 42

    Gierthmühlen J, Arning P, Binder A, et al. Influence of deep brain stimulation and levodopa on sensory signs in Parkinson’s disease. Mov Disord. 2010;25(9):11951202.

  • 43

    Kim HJ, Jeon BS, Paek SH. Effect of deep brain stimulation on pain in Parkinson disease. J Neurol Sci. 2011;310(1-2):251255.

  • 44

    Cury RG, Galhardoni R, Fonoff ET, et al. Effects of deep brain stimulation on pain and other nonmotor symptoms in Parkinson disease. Neurology. 2014;83(16):14031409.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Jung YJ, Kim HJ, Jeon BS, Park H, Lee WW, Paek SH. An 8-year follow-up on the effect of subthalamic nucleus deep brain stimulation on pain in Parkinson disease. JAMA Neurol. 2015;72(5):504510.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    Loher TJ, Burgunder JM, Pohle T, Weber S, Sommerhalder R, Krauss JK. Long-term pallidal deep brain stimulation in patients with advanced Parkinson disease: 1-year follow-up study. J Neurosurg. 2002;96(5):844853.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    DiMarzio M, Pilitsis JG, Gee L, et al. King’s Parkinson’s disease pain scale for assessment of pain relief following deep brain stimulation for Parkinson’s disease. Neuromodulation. 2018;21(6):617622.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48

    Gong S, Xu M, Tao Y, et al. Comparison of subthalamic nucleus and globus pallidus internus deep brain stimulation surgery on Parkinson disease-related pain. World Neurosurg. 2020;135:e94e99.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    Dafsari HS, Dos Santos Ghilardi MG, Visser-Vandewalle V, et al. Beneficial nonmotor effects of subthalamic and pallidal neurostimulation in Parkinson’s disease. Brain Stimul. 2020;13(6):16971705.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50

    Marques A, Chassin O, Morand D, et al. Central pain modulation after subthalamic nucleus stimulation: a crossover randomized trial. Neurology. 2013;81(7):633640.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 51

    Fabbri M, Coelho M, Guedes LC, et al. Acute response of non-motor symptoms to subthalamic deep brain stimulation in Parkinson’s disease. Parkinsonism Relat Disord. 2017;41:113117.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 52

    de Andrade DC, Lefaucheur JP, Galhardoni R, et al. Subthalamic deep brain stimulation modulates small fiber-dependent sensory thresholds in Parkinson’s disease. Pain. 2012;153(5):11071113.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53

    Tinazzi M, Del Vesco C, Fincati E, et al. Pain and motor complications in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 2006;77(7):822825.

  • 54

    Slaoui T, Mas-Gerdelat A, Ory-Magne F, Rascol O, Brefel-Courbon C. Levodopa modifies pain thresholds in Parkinson’s disease patients. Article in French. Rev Neurol (Paris). 2007;163(1):6671.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 55

    Gerdelat-Mas A, Simonetta-Moreau M, Thalamas C, et al. Levodopa raises objective pain threshold in Parkinson’s disease: a RIII reflex study. J Neurol Neurosurg Psychiatry. 2007;78(10):11401142.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56

    Conte A, Khan N, Defazio G, Rothwell JC, Berardelli A. Pathophysiology of somatosensory abnormalities in Parkinson disease. Nat Rev Neurol. 2013;9(12):687697.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57

    Dellapina E, Ory-Magne F, Regragui W, et al. Effect of subthalamic deep brain stimulation on pain in Parkinson’s disease. Pain. 2012;153(11):22672273.

  • 58

    Hilker R, Voges J, Weisenbach S, et al. Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease. J Cereb Blood Flow Metab. 2004;24(1):716.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59

    Cury RG, Galhardoni R, Teixeira MJ, et al. Subthalamic deep brain stimulation modulates conscious perception of sensory function in Parkinson’s disease. Pain. 2016;157(12):27582765.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 60

    Le Jeune F, Péron J, Grandjean D, et al. Subthalamic nucleus stimulation affects limbic and associative circuits: a PET study. Eur J Nucl Med Mol Imaging. 2010;37(8):15121520.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 61

    Djaldetti R, Shifrin A, Rogowski Z, Sprecher E, Melamed E, Yarnitsky D. Quantitative measurement of pain sensation in patients with Parkinson disease. Neurology. 2004;62(12):21712175.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62

    Watanabe K, Hirano T, Katsumi K, et al. Characteristics and exacerbating factors of chronic low back pain in Parkinson’s disease. Int Orthop. 2015;39(12):24332438.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63

    Yilmaz NH, Saricaoğlu M, Eser HY, Düz OA, Polat B, Özer FF. The relationship between pain, and freezing of gait and falls in Parkinson’s disease. Noro Psikiyatri Arsivi. 2019;57(1):5660.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64

    Shulman LM, Taback RL, Bean J, Weiner WJ. Comorbidity of the nonmotor symptoms of Parkinson’s disease. Mov Disord. 2001;16(3):507510.

  • 65

    Schneider JS, Diamond SG, Markham CH. Deficits in orofacial sensorimotor function in Parkinson’s disease. Ann Neurol. 1986;19(3):275282.

  • 66

    Klockgether T, Borutta M, Rapp H, Spieker S, Dichgans J. A defect of kinesthesia in Parkinson’s disease. Mov Disord. 1995;10(4):460465.

  • 67

    Jobst EE, Melnick ME, Byl NN, Dowling GA, Aminoff MJ. Sensory perception in Parkinson disease. Arch Neurol. 1997;54(4):450454.

  • 68

    Sathian K, Zangaladze A, Green J, Vitek JL, DeLong MR. Tactile spatial acuity and roughness discrimination: impairments due to aging and Parkinson’s disease. Neurology. 1997;49(1):168177.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69

    Rickards C, Cody FW. Proprioceptive control of wrist movements in Parkinson’s disease. Reduced muscle vibration-induced errors. Brain. 1997;120(Pt 6):977990.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 70

    Rossini PM, Bassetti MA, Pasqualetti P. Median nerve somatosensory evoked potentials. Apomorphine-induced transient potentiation of frontal components in Parkinson’s disease and in parkinsonism. Electroencephalogr Clin Neurophysiol. 1995;96(3):236247.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71

    Traversa R, Pierantozzi M, Semprini R, et al. N30 wave amplitude of somatosensory evoked potentials from median nerve in Parkinson’s disease: a pharmacological study. J Neural Transm Suppl. 1995;45:177185.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 72

    Huttunen J, Teräväinen H. Pre- and postcentral cortical somatosensory evoked potentials in hemiparkinsonism. Mov Disord. 1993;8(4):430436.

  • 73

    Drory VE, Inzelberg R, Groozman GB, Korczyn AD. N30 somatosensory evoked potentials in patients with unilateral Parkinson’s disease. Acta Neurol Scand. 1998;97(2):7376.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 74

    Boecker H, Ceballos-Baumann A, Bartenstein P, et al. Sensory processing in Parkinson’s and Huntington’s disease: investigations with 3D H215O-PET. Brain. 1999;122(Pt 9):16511665.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75

    Zibetti M, Torre E, Cinquepalmi A, et al. Motor and nonmotor symptom follow-up in Parkinsonian patients after deep brain stimulation of the subthalamic nucleus. Eur Neurol. 2007;58(4):218223.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 76

    Maruo T, Saitoh Y, Hosomi K, et al. Deep brain stimulation of the subthalamic nucleus improves temperature sensation in patients with Parkinson’s disease. Pain. 2011;152(4):860865.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 77

    Nazzaro JM, Pahwa R, Lyons KE. The impact of bilateral subthalamic stimulation on non-motor symptoms of Parkinson’s disease. Parkinsonism Relat Disord. 2011;17(8):606609.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 78

    Kim HJ, Jeon BS, Lee JY, Paek SH, Kim DG. The benefit of subthalamic deep brain stimulation for pain in Parkinson disease: a 2-year follow-up study. Neurosurgery. 2012;70(1):1824.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 79

    Jafari N, Pahwa R, Nazzaro JM, Arnold PM, Lyons KE. MDS-UPDRS to assess non-motor symptoms after STN DBS for Parkinson’s disease. Int J Neurosci. 2016;126(1):2529.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 80

    Belasen A, Rizvi K, Gee LE, et al. Effect of low-frequency deep brain stimulation on sensory thresholds in Parkinson’s disease. J Neurosurg. 2017;126(2):397403.

  • 81

    Huzmeli ED, Yilmaz A. Effect of deep brain stimulation on quality of life in patients with Parkinson’s disease. Turk J Neurol. 2018;24(3):264268.

  • 82

    Cury RG, Teixeira MJ, Galhardoni R, et al. Connectivity patterns of subthalamic stimulation influence pain outcomes in Parkinson’s disease. Front Neurol. 2020;11:9.

  • 83

    Dafsari HS, Ghilardi MGDS, Visser-Vandewalle V, et al. Beneficial nonmotor effects of subthalamic and pallidal neurostimulation in Parkinson’s disease. Brain Stimul. 2020;13(6):16971705.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 84

    Huzmeli ED, Yilmaz A, Okuyucu E. Analysis of the effects of subthalamic nucleus deep brain stimulation on somatosensation in Parkinson’s disease patients. Neurol Sci. 2020;41(4):925931.

    • Crossref
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1944 1918 122
Full Text Views 280 280 33
PDF Downloads 354 354 35
EPUB Downloads 0 0 0