Regrowth factors of WHO grade I skull base meningiomas following incomplete resection

Hun Ho Park Department of Neurosurgery, Gangnam Severance Hospital, and

Search for other papers by Hun Ho Park in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Jihwan Yoo Department of Neurosurgery, Gangnam Severance Hospital, and

Search for other papers by Jihwan Yoo in
Current site
Google Scholar
PubMed
Close
 MD
,
Hyeong-Cheol Oh Department of Neurosurgery, Gangnam Severance Hospital, and

Search for other papers by Hyeong-Cheol Oh in
Current site
Google Scholar
PubMed
Close
 MD
,
Yoon Jin Cha Department of Pathology, Yonsei University Health System, Seoul, Republic of Korea

Search for other papers by Yoon Jin Cha in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Se Hoon Kim Department of Pathology, Yonsei University Health System, Seoul, Republic of Korea

Search for other papers by Se Hoon Kim in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Chang-Ki Hong Department of Neurosurgery, Gangnam Severance Hospital, and

Search for other papers by Chang-Ki Hong in
Current site
Google Scholar
PubMed
Close
 MD, PhD
, and
Kyu-Sung Lee Department of Neurosurgery, Gangnam Severance Hospital, and

Search for other papers by Kyu-Sung Lee in
Current site
Google Scholar
PubMed
Close
 MD, PhD
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $536.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $636.00
USD  $45.00
USD  $536.00
USD  $636.00
Print or Print + Online Sign in

OBJECTIVE

The role of adjuvant radiation therapy following incomplete resection of WHO grade I skull base meningiomas (SBMs) is controversial, and little is known regarding the behavior of residual tumors. The authors investigated the factors that influence regrowth of residual WHO grade I SBMs following incomplete resection.

METHODS

From 2005 to 2019, a total of 710 patients underwent surgery for newly diagnosed WHO grade I SBMs. The data of 115 patients (16.2%) with incomplete resection and without any adjuvant radiotherapy were retrospectively assessed during a mean follow-up of 78 months (range 27–198 months). Pre-, intra-, and postoperative clinical and molecular factors were analyzed for relevance to regrowth-free survival (RFS).

RESULTS

Eighty patients were eligible for analysis, excluding those who were lost to follow-up (n = 10) or had adjuvant radiotherapy (n = 25). Regrowth occurred in 39 patients (48.7%), with a mean RFS of 50 months (range 3–191 months). Significant predictors of regrowth were Ki-67 proliferative index (PI) ≥ 4% (p = 0.017), Simpson resection grades IV and V (p = 0.005), and invasion of the cavernous sinus (p = 0.027) and Meckel’s cave (p = 0.027). After Cox regression analysis, only Ki-67 PI ≥ 4% (hazard ratio [HR] 9.39, p = 0.003) and Simpson grades IV and V (HR 8.65, p = 0.001) showed significant deterioration of RFS. When stratified into 4 scoring groups, the mean RFSs were 110, 70, 38, and 9 months for scores 1 (Ki-67 PI < 4% and Simpson grade III), 2 (Ki-67 PI < 4% and Simpson grades IV and V), 3 (Ki-67 PI ≥ 4% and Simpson grade III), and 4 (Ki-67 PI ≥ 4% and Simpson grades IV and V), respectively. RFS was significantly longer for score 1 versus scores 2–4 (p < 0.01). Tumor consistency, histology, location, peritumoral edema, vascular encasement, and telomerase reverse transcriptase promoter mutation had no impact on regrowth.

CONCLUSIONS

Ki-67 PI and Simpson resection grade showed significant associations with RFS for WHO grade I SBMs following incomplete resection. Ki-67 PI and Simpson resection grade could be utilized to stratify the level of risk for regrowth.

ABBREVIATIONS

CI = confidence interval; EOR = extent of resection; HR = hazard ratio; PCR = polymerase chain reaction; PI = proliferative index; RFS = regrowth-free survival; SBM = skull base meningioma; TERT = telomerase reverse transcriptase.
  • Collapse
  • Expand

Figure from Kim et al. (pp 1601–1609).

  • 1

    Wiemels J, Wrensch M, Claus EB. Epidemiology and etiology of meningioma. J Neurooncol. 2010;99(3):307314.

  • 2

    Mathiesen T, Lindquist C, Kihlström L, Karlsson B. Recurrence of cranial base meningiomas. Neurosurgery. 1996;39(1):29.

  • 3

    Simpson D. The recurrence of intracranial meningiomas after surgical treatment. J Neurol Neurosurg Psychiatry. 1957;20(1):2239.

  • 4

    Gomes Dos Santos A, Solla DJF, Moscardi R, et al. Adjuvant radiotherapy did not reduce recurrence of World Health Organization grade I meningiomas with venous sinus involvement: a propensity score adjusted analysis and literature review. World Neurosurg. 2019;130:e1015e1019.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Maclean J, Fersht N, Short S. Controversies in radiotherapy for meningioma. Clin Oncol (R Coll Radiol). 2014;26(1):5164.

  • 6

    Oya S, Ikawa F, Ichihara N, et al. Effect of adjuvant radiotherapy after subtotal resection for WHO grade I meningioma: a propensity score matching analysis of the Brain Tumor Registry of Japan. J Neurooncol. 2021;153(2):351360.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Pourel N, Auque J, Bracard S, et al. Efficacy of external fractionated radiation therapy in the treatment of meningiomas: a 20-year experience. Radiother Oncol. 2001;61(1):6570.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Da Broi M, Borrelli P, Meling TR. Predictors of survival in subtotally resection WHO grade I skull base meningiomas. Cancers (Basel). 2021;13(6):1451.

  • 9

    Mansouri A, Klironomos G, Taslimi S, et al. Surgically resected skull base meningiomas demonstrate a divergent postoperative recurrence pattern compared with non-skull base meningiomas. J Neurosurg. 2016;125(2):431440.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Nanda A, Bir SC, Maiti TK, Konar SK, Missios S, Guthikonda B. Relevance of Simpson grading system and recurrence-free survival after surgery for World Health Organization Grade I meningioma. J Neurosurg. 2017;126(1):201211.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Mirian C, Duun-Henriksen AK, Juratli T, et al. Poor prognosis associated with TERT gene alterations in meningioma is independent of the WHO classification: an individual patient data meta-analysis. J Neurol Neurosurg Psychiatry. 2020;91(4):378387.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Olar A, Wani KM, Sulman EP, et al. Mitotic index is an independent predictor of recurrence-free survival in meningioma. Brain Pathol. 2015;25(3):266275.

  • 13

    Nowak-Choi K, Palmer JD, Casey J, et al. Resected WHO grade I meningioma and predictors of local control. J Neurooncol. 2021;152(1):145151.

  • 14

    Mirian C, Skyrman S, Bartek J Jr, et al. The Ki-67 proliferation index as a marker of time to recurrence in intracranial meningioma. Neurosurgery. 2020;87(6):12891298.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Oya S, Kawai K, Nakatomi H, Saito N. Significance of Simpson grading system in modern meningioma surgery: integration of the grade with MIB-1 labeling index as a key to predict the recurrence of WHO Grade I meningiomas. J Neurosurg. 2012;117(1):121128.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Vankalakunti M, Vasishta RK, Das Radotra B, Khosla VK. MIB-1 immunolabeling: a valuable marker in prediction of benign recurring meningiomas. Neuropathology. 2007;27(5):407412.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Spiegl-Kreinecker S, Lötsch D, Neumayer K, et al. TERT promoter mutations are associated with poor prognosis and cell immortalization in meningioma. Neuro Oncol. 2018;20(12):15841593.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Lu VM, Goyal A, Lee A, Jentoft M, Quinones-Hinojosa A, Chaichana KL. The prognostic significance of TERT promoter mutations in meningioma: a systematic review and meta-analysis. J Neurooncol. 2019;142(1):110.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Hashimoto N, Rabo CS, Okita Y, et al. Slower growth of skull base meningiomas compared with non-skull base meningiomas based on volumetric and biological studies. J Neurosurg. 2012;116(3):574580.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    McGovern SL, Aldape KD, Munsell MF, Mahajan A, DeMonte F, Woo SY. A comparison of World Health Organization tumor grades at recurrence in patients with non-skull base and skull base meningiomas. J Neurosurg. 2010;112(5):925933.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Sade B, Chahlavi A, Krishnaney A, Nagel S, Choi E, Lee JH. World Health Organization Grades II and III meningiomas are rare in the cranial base and spine. Neurosurgery. 2007;61(6):11941198.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803820.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Laurinavicius A, Plancoulaine B, Laurinaviciene A, et al. A methodology to ensure and improve accuracy of Ki67 labelling index estimation by automated digital image analysis in breast cancer tissue. Breast Cancer Res. 2014;16(2):R35.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Papathomas TG, Pucci E, Giordano TJ, et al. An international Ki67 reproducibility study in adrenal cortical carcinoma. Am J Surg Pathol. 2016;40(4):569576.

  • 25

    Stålhammar G, Fuentes Martinez N, Lippert M, et al. Digital image analysis outperforms manual biomarker assessment in breast cancer. Mod Pathol. 2016;29(4):318329.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Sughrue ME, Kane AJ, Shangari G, et al. The relevance of Simpson Grade I and II resection in modern neurosurgical treatment of World Health Organization Grade I meningiomas. J Neurosurg. 2010;113(5):10291035.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Sitthinamsuwan B, Khampalikit I, Nunta-aree S, Srirabheebhat P, Witthiwej T, Nitising A. Predictors of meningioma consistency: a study in 243 consecutive cases. Acta Neurochir (Wien). 2012;154(8):13831389.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Abry E, Thomassen IO, Salvesen OO, Torp SH. The significance of Ki-67/MIB-1 labeling index in human meningiomas: a literature study. Pathol Res Pract. 2010;206(12):810815.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Barbaro NM, Gutin PH, Wilson CB, Sheline GE, Boldrey EB, Wara WM. Radiation therapy in the treatment of partially resected meningiomas. Neurosurgery. 1987;20(4):525528.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Miralbell R, Linggood RM, de la Monte S, Convery K, Munzenrider JE, Mirimanoff RO. The role of radiotherapy in the treatment of subtotally resected benign meningiomas. J Neurooncol. 1992;13(2):157164.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Goldbrunner R, Minniti G, Preusser M, et al. EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol. 2016;17(9):e383e391.

  • 32

    NCCN guidelines: Central Nervous System Cancers. National Comprehensive Cancer Network. Accessed March 15, 2022. https://www.nccn.org/guidelines/guidelines-detail?category=1&id=1425

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Rogers L, Barani I, Chamberlain M, et al. Meningiomas: knowledge base, treatment outcomes, and uncertainties. A RANO review. J Neurosurg. 2015;122(1):423.

  • 34

    Rogers L, Zhang P, Vogelbaum MA, et al. Intermediate-risk meningioma: initial outcomes from NRG Oncology RTOG 0539. J Neurosurg. 2018;129(1):3547.

  • 35

    Brastianos PK, Horowitz PM, Santagata S, et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet. 2013;45(3):285289.

  • 36

    Clark VE, Erson-Omay EZ, Serin A, et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science. 2013;339(6123):10771080.

  • 37

    Ayerbe J, Lobato RD, de la Cruz J, et al. Risk factors predicting recurrence in patients operated on for intracranial meningioma. A multivariate analysis. Acta Neurochir (Wien). 1999;141(9):921932.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Mantle RE, Lach B, Delgado MR, Baeesa S, Bélanger G. Predicting the probability of meningioma recurrence based on the quantity of peritumoral brain edema on computerized tomography scanning. J Neurosurg. 1999;91(3):375383.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Berghoff AS, Stefanits H, Woehrer A, Heinzl H, Preusser M, Hainfellner JA. Clinical neuropathology practice guide 3-2013: levels of evidence and clinical utility of prognostic and predictive candidate brain tumor biomarkers. Clin Neuropathol. 2013;32(3):148158.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Morimura T, Kitz K, Budka H. In situ analysis of cell kinetics in human brain tumors. A comparative immunocytochemical study of S phase cells by a new in vitro bromodeoxyuridine-labeling technique, and of proliferating pool cells by monoclonal antibody Ki-67. Acta Neuropathol. 1989;77(3):276282.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Prayson RA. The utility of MIB-1/Ki-67 immunostaining in the evaluation of central nervous system neoplasms. Adv Anat Pathol. 2005;12(3):144148.

  • 42

    Abedalthagafi M, Bi WL, Aizer AA, et al. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro Oncol. 2016;18(5):649655.

  • 43

    Clark VE, Erson-Omay EZ, Serin A, et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science. 2013;339(6123):10771080.

  • 44

    Lee KS, Hoshino T, Rodriguez LA, Bederson J, Davis RL, Wilson CB. Bromodeoxyuridine labeling study of intracranial meningiomas: proliferative potential and recurrence. Acta Neuropathol. 1990;80(3):311317.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 2072 615 180
Full Text Views 598 40 3
PDF Downloads 657 51 7
EPUB Downloads 0 0 0