Overview of the microanatomy of the human brainstem in relation to the safe entry zones

Alis GuberinicDepartment of Neurosurgery, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands;

Search for other papers by Alis Guberinic in
Current site
Google Scholar
PubMed
Close
 MSc
,
Rik van den ElshoutDepartment of Radiology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands;

Search for other papers by Rik van den Elshout in
Current site
Google Scholar
PubMed
Close
 MSc
,
Tamas KoziczDepartment of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota; and
Department of Clinical Genomics, Mayo Clinic, Rochester, Minnesota

Search for other papers by Tamas Kozicz in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Mark ter LaanDepartment of Neurosurgery, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands;

Search for other papers by Mark ter Laan in
Current site
Google Scholar
PubMed
Close
 MD, PhD
, and
Dylan HenssenDepartment of Radiology, Radboud University Medical Center, Radboud Institute for Health Sciences, Nijmegen, The Netherlands;

Search for other papers by Dylan Henssen in
Current site
Google Scholar
PubMed
Close
 MD, PhD
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $525.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $525.00
USD  $624.00
Print or Print + Online Sign in

OBJECTIVE

The primary objective of this anatomical study was to apply innovative imaging techniques to increase understanding of the microanatomical structures of the brainstem related to safe entry zones. The authors hypothesized that such a high-detail overview would enhance neurosurgeons’ abilities to approach and define anatomical safe entry zones for use with microsurgical resection techniques for intrinsic brainstem lesions.

METHODS

The brainstems of 13 cadavers were studied with polarized light imaging (PLI) and 11.7-T MRI. The brainstem was divided into 3 compartments—mesencephalon, pons, and medulla—for evaluation with MRI. Tissue was further sectioned to 100 μm with a microtome. MATLAB was used for further data processing. Segmentation of the internal structures of the brainstem was performed with the BigBrain database.

RESULTS

Thirteen entry zones were reported and assessed for their safety, including the anterior mesencephalic zone, lateral mesencephalic sulcus, interpeduncular zone, intercollicular region, supratrigeminal zone, peritrigeminal zone, lateral pontine zone, median sulcus, infracollicular zone, supracollicular zone, olivary zone, lateral medullary zone, and anterolateral sulcus. The microanatomy, safety, and approaches are discussed.

CONCLUSIONS

PLI and 11.7-T MRI data show that a neurosurgeon possibly does not need to consider the microanatomical structures that would not be visible on conventional MRI and tractography when entering the mentioned safe entry zones. However, the detailed anatomical images may help neurosurgeons increase their understanding of the internal architecture of the human brainstem, which in turn could lead to safer neurosurgical intervention.

ABBREVIATIONS

ALS = anterolateral sulcus; AMZ = anterior mesencephalic zone; CST = corticospinal tract; ICR = intercollicular region; ICZ = infracollicular zone; IPZ = interpeduncular zone; LMS = lateral mesencephalic sulcus; LMZ = lateral medullary zone; LPZ = lateral pontine zone; MS = median sulcus; OZ = olivary zone; PAG = periaqueductal gray matter; PL = polarized light; PLI = PL imaging; PTZ = peritrigeminal zone; SCIT = supracerebellar infratentorial; SCZ = supracollicular zone; STZ = supratrigeminal zone.

Supplementary Materials

    • Supplementary Materials (ZIP 15,242 KB)
  • Collapse
  • Expand

Illustration from Xu et al. (pp 1418–1430). With permission from Juan Carlos Fernandez-Miranda and The Neurosurgical Atlas by Aaron Cohen-Gadol.

  • 1

    Abla AA, Lekovic GP, Turner JD, de Oliveira JG, Porter R, Spetzler RF. Advances in the treatment and outcome of brainstem cavernous malformation surgery: a single-center case series of 300 surgically treated patients. Neurosurgery. 2011;68(2):403415.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Cavalheiro S, Yagmurlu K, da Costa MD, et al. Surgical approaches for brainstem tumors in pediatric patients. Childs Nerv Syst. 2015;31(10):18151840.

  • 3

    Elhammady MS, Teo C. Surgical management of adult intrinsic brainstem tumors. Neurosurgery. 2013;60(suppl 1):131138.

  • 4

    McDeavitt JT, King KC, McDeavitt KR. Learning brainstem anatomy: a mnemonic device. PM R. 2014;6(10):963966.

  • 5

    Angeles Fernández-Gil M, Palacios-Bote R, Leo-Barahona M, Mora-Encinas JP. Anatomy of the brainstem: a gaze into the stem of life. Semin Ultrasound CT MR. 2010;31(3):196219.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6

    Schulz-Ertner D, Debus J, Lohr F, Frank C, Höss A, Wannenmacher M. Fractionated stereotactic conformal radiation therapy of brain stem gliomas: outcome and prognostic factors. Radiother Oncol. 2000;57(2):215223.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Prados MD, Edwards MS, Rabbitt J, Lamborn K, Davis RL, Levin VA. Treatment of pediatric low-grade gliomas with a nitrosourea-based multiagent chemotherapy regimen. J Neurooncol. 1997;32(3):235241.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Kalani MYS, Yağmurlu K, Spetzler RF. The interpeduncular fossa approach for resection of ventromedial midbrain lesions. J Neurosurg. 2018;128(3):834839.

  • 9

    Yang Y, van Niftrik B, Ma X, et al. Analysis of safe entry zones into the brainstem. Neurosurg Rev. 2019;42(3):721729.

  • 10

    Li ST, Zhong J. Surgery for mesencephalic cavernoma: case report. Surg Neurol. 2007;67(4):413418.

  • 11

    Deshmukh VR, Rangel-Castilla L, Spetzler RF. Lateral inferior cerebellar peduncle approach to dorsolateral medullary cavernous malformation. J Neurosurg. 2014;121(3):723729.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Kalani MY, Yagmurlu K, Martirosyan NL, Cavalcanti DD, Spetzler RF. Approach selection for intrinsic brainstem pathologies. J Neurosurg. 2016;125(6):15961607.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Bertalanffy H, Benes L, Miyazawa T, Alberti O, Siegel AM, Sure U. Cerebral cavernomas in the adult. Review of the literature and analysis of 72 surgically treated patients. Neurosurg Rev. 2002;25(1-2):155.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Cavalcanti DD, Preul MC, Kalani MY, Spetzler RF. Microsurgical anatomy of safe entry zones to the brainstem. J Neurosurg. 2016;124(5):13591376.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Mukherjee D, Antar V, Soylemez B, et al. High-resolution diffusion tensor magnetic resonance imaging of the brainstem safe entry zones. Neurosurg Rev. 2020;43(1):153167.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Strauss C, Romstöck J, Fahlbusch R. Pericollicular approaches to the rhomboid fossa. Part II. Neurophysiological basis. J Neurosurg. 1999;91(5):768775.

    • Search Google Scholar
    • Export Citation
  • 17

    Cavalcanti DD, Morais BA, Figueiredo EG, Spetzler RF, Preul MC. Accessing the anterior mesencephalic zone: orbitozygomatic versus subtemporal approach. World Neurosurg. 2018;119:e818e824.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Axer H, Beck S, Axer M, et al. Microstructural analysis of human white matter architecture using polarized light imaging: views from neuroanatomy. Front Neuroinform. 2011;5:28.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Axer M, Grässel D, Kleiner M, et al. High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging. Front Neuroinform. 2011;5:34.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Axer M, Amunts K, Grässel D, et al. A novel approach to the human connectome: ultra-high resolution mapping of fiber tracts in the brain. Neuroimage. 2011;54(2):10911101.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21

    Henssen DJHA, Mollink J, Kurt E, et al. Ex vivo visualization of the trigeminal pathways in the human brainstem using 11.7T diffusion MRI combined with microscopy polarized light imaging. Brain Struct Funct. 2019;224(1):159170.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Guberinic A, Souverein V, Volkers R, et al. Mapping the trigeminal root entry zone and its pontine fibre distribution patterns. Cephalalgia. 2020;40(14):16451656.

  • 23

    Henssen DJHA, Derks B, van Doorn M, et al. Visualizing the trigeminovagal complex in the human medulla by combining ex-vivo ultra-high resolution structural MRI and polarized light imaging microscopy. Sci Rep. 2019;9(1):11305.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Shepherd TM, Thelwall PE, Stanisz GJ, Blackband SJ. Aldehyde fixative solutions alter the water relaxation and diffusion properties of nervous tissue. Magn Reson Med. 2009;62(1):2634.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Mollink J, Kleinnijenhuis M, Cappellen van Walsum AV, et al. Evaluating fibre orientation dispersion in white matter: comparison of diffusion MRI, histology and polarized light imaging. Neuroimage. 2017;157:561574.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Amunts K, Lepage C, Borgeat L, et al. BigBrain: an ultrahigh-resolution 3D human brain model. Science. 2013;340(6139):14721475.

  • 27

    Yushkevich PA, Piven J, Hazlett HC, et al. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31(3):11161128.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Párraga RG, Possatti LL, Alves RV, Ribas GC, Türe U, de Oliveira E. Microsurgical anatomy and internal architecture of the brainstem in 3D images: surgical considerations. J Neurosurg. 2016;124(5):13771395.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Bricolo A, Turazzi S, Cristofori L, Talacchi A. Direct surgery for brainstem tumours. Acta Neurochir Suppl (Wien). 1991;53:148158.

  • 30

    Spennato P, Chiaramonte C, Russo C, et al. Subtemporal transtentorial approach in mesencephalic and perimesencephalic lesions in children—a series of 20 patients. Oper Neurosurg (Hagerstown). 2020;18(4):349362.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31

    Campero A, Roman G, Baldoncini M, Villalonga JF. Supracerebellar-infratrochlear approach for midbrain cavernoma: 3-dimensional operative video. Oper Neurosurg (Hagerstown). 2020;19(2):E151.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32

    Giliberto G, Lanzino DJ, Diehn FE, Factor D, Flemming KD, Lanzino G. Brainstem cavernous malformations: anatomical, clinical, and surgical considerations. Neurosurg Focus. 2010;29(3):E9.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1305 1305 190
Full Text Views 389 389 106
PDF Downloads 570 570 161
EPUB Downloads 0 0 0