5-Aminolevulinic acid–enhanced fluorescence-guided treatment of high-grade glioma using angled endoscopic blue light visualization: technical case series with preliminary follow-up

Ben A. StricklandDepartments of Neurological Surgery,

Search for other papers by Ben A. Strickland in
Current site
Google Scholar
PubMed
Close
 MD
,
Michelle WedemeyerDepartments of Neurological Surgery,

Search for other papers by Michelle Wedemeyer in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Jacob RuzevickDepartments of Neurological Surgery,

Search for other papers by Jacob Ruzevick in
Current site
Google Scholar
PubMed
Close
 MD
,
Alexander MickoDepartments of Neurological Surgery,

Search for other papers by Alexander Micko in
Current site
Google Scholar
PubMed
Close
 MD, PhD
,
Shane ShahrestaniDepartments of Neurological Surgery,

Search for other papers by Shane Shahrestani in
Current site
Google Scholar
PubMed
Close
 MS, PhD
,
Siamak DaneshmandUrology, and

Search for other papers by Siamak Daneshmand in
Current site
Google Scholar
PubMed
Close
 MD
,
Mark S. ShiroishiRadiology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California

Search for other papers by Mark S. Shiroishi in
Current site
Google Scholar
PubMed
Close
 MD, MS
,
Darryl H. HwangRadiology, USC/Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California

Search for other papers by Darryl H. Hwang in
Current site
Google Scholar
PubMed
Close
 PhD
,
Frank AttenelloDepartments of Neurological Surgery,

Search for other papers by Frank Attenello in
Current site
Google Scholar
PubMed
Close
 MD
,
Thomas ChenDepartments of Neurological Surgery,

Search for other papers by Thomas Chen in
Current site
Google Scholar
PubMed
Close
 MD, PhD
, and
Gabriel ZadaDepartments of Neurological Surgery,

Search for other papers by Gabriel Zada in
Current site
Google Scholar
PubMed
Close
 MD
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $525.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $525.00
USD  $624.00
Print or Print + Online Sign in

OBJECTIVE

5-Aminolevulinic acid (5-ALA)–enhanced fluorescence-guided resection of high-grade glioma (HGG) using microscopic blue light visualization offers the ability to improve extent of resection (EOR); however, few descriptions of HGG resection performed using endoscopic blue light visualization are currently available. In this report, the authors sought to describe their surgical experience and patient outcomes of 5-ALA–enhanced fluorescence-guided resection of HGG using primary or adjunctive endoscopic blue light visualization.

METHODS

The authors performed a retrospective review of prospectively collected data from 30 consecutive patients who underwent 5-ALA–enhanced fluorescence-guided biopsy or resection of newly diagnosed HGG was performed. Patient demographic data, tumor characteristics, surgical technique, EOR, tumor fluorescence patterns, and progression-free survival were recorded.

RESULTS

In total, 30 newly diagnosed HGG patients were included for analysis. The endoscope was utilized for direct 5-ALA–guided port-based biopsy (n = 9), microscopic to endoscopic (M2E; n = 18) resection, or exoscopic to endoscopic (E2E; n = 3) resection. All endoscopic biopsies of fluorescent tissue were diagnostic. 5-ALA–enhanced tumor fluorescence was visible in all glioblastoma cases, but only in 50% of anaplastic astrocytoma cases and no anaplastic oligodendroglioma cases. Gross-total resection (GTR) was achieved in 10 patients in whom complete resection was considered safe, with 11 patients undergoing subtotal resection. In all cases, endoscopic fluorescence was more avid than microscopic fluorescence. The endoscope offered the ability to diagnose and resect additional tumor not visualized by the microscope in 83.3% (n = 10/12) of glioblastoma cases, driven by angled lenses and increased fluorescence facilitated by light source delivery within the cavity. Mean volumetric EOR was 90.7% in all resection patients and 98.8% in patients undergoing planned GTR. No complications were attributable to 5-ALA or blue light endoscopy.

CONCLUSIONS

The blue light endoscope is a viable primary or adjunctive visualization platform for optimization of 5-ALA–enhanced HGG fluorescence. Implementation of the blue light endoscope to guide resection of HGG glioma is feasible and ergonomically favorable, with a potential advantage of enabling increased detection of tumor fluorescence in deep surgical cavities compared to the microscope.

ABBREVIATIONS

AA = anaplastic astrocytoma; AO = anaplastic oligodendroglioma; E2E = exoscopic to endoscopic; GBM = glioblastoma; GTR = gross-total resection; HGG = high-grade glioma; M2E = microscopic to endoscopic; SMA = supplementary motor area; STR = subtotal resection; 5-ALA = 5-aminolevulinic acid.
  • Collapse
  • Expand

Illustration from Xu et al. (pp 1418–1430). With permission from Juan Carlos Fernandez-Miranda and The Neurosurgical Atlas by Aaron Cohen-Gadol.

  • 1

    Stupp R, Mason WP, van den Bent MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987996.

  • 2

    Lowe S, Bhat KP, Olar A. Current clinical management of patients with glioblastoma. Cancer Rep (Hoboken). 2019;2(6):e1216.

  • 3

    Valdebenito S, D’Amico D, Eugenin E. Novel approaches for glioblastoma treatment: focus on tumor heterogeneity, treatment resistance, and computational tools. Cancer Rep (Hoboken). 2019;2(6):e1220.

    • Search Google Scholar
    • Export Citation
  • 4

    Brown TJ, Brennan MC, Li M, et al. Association of the extent of resection with survival in glioblastoma: a systematic review and meta-analysis. JAMA Oncol. 2016;2(11):14601469.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Lacroix M, Abi-Said D, Fourney DR, et al. A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg. 2001;95(2):190198.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Sanai N, Polley MY, McDermott MW, Parsa AT, Berger MS. An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg. 2011;115(1):38.

  • 7

    Kabuto M, Kubota T, Kobayashi H, et al. Experimental and clinical study of detection of glioma at surgery using fluorescent imaging by a surgical microscope after fluorescein administration. Neurol Res. 1997;19(1):916.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Hadjipanayis CG, Widhalm G, Stummer W. What is the surgical benefit of utilizing 5-aminolevulinic acid for fluorescence-guided surgery of malignant gliomas?. Neurosurgery. 2015;77(5):663673.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Duffau H. Surgery for malignant brain gliomas: fluorescence-guided resection or functional-based resection? Front Surg. 2019;6:21.

  • 10

    Widhalm G, Olson J, Weller J, et al. The value of visible 5-ALA fluorescence and quantitative protoporphyrin IX analysis for improved surgery of suspected low-grade gliomas. J Neurosurg. 2020;133(1):7988.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ. Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol. 2006;7(5):392401.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Stummer W, Stocker S, Wagner S, et al. Intraoperative detection of malignant gliomas by 5-aminolevulinic acid-induced porphyrin fluorescence. Neurosurgery. 1998;42(3):518526.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Stummer W, Novotny A, Stepp H, Goetz C, Bise K, Reulen HJ. Fluorescence-guided resection of glioblastoma multiforme by using 5-aminolevulinic acid-induced porphyrins: a prospective study in 52 consecutive patients. J Neurosurg. 2000;93(6):10031013.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Coburger J, Engelke J, Scheuerle A, et al. Tumor detection with 5-aminolevulinic acid fluorescence and Gd-DTPA-enhanced intraoperative MRI at the border of contrast-enhancing lesions: a prospective study based on histopathological assessment. Neurosurg Focus. 2014;36(2):E3.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Yamada S, Muragaki Y, Maruyama T, Komori T, Okada Y. Role of neurochemical navigation with 5-aminolevulinic acid during intraoperative MRI-guided resection of intracranial malignant gliomas. Clin Neurol Neurosurg. 2015;130:134139.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Stummer W, Rodrigues F, Schucht P, et al. Predicting the "usefulness" of 5-ALA-derived tumor fluorescence for fluorescence-guided resections in pediatric brain tumors: a European survey. Acta Neurochir (Wien). 2014;156(12):23152324.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17

    Widhalm G, Kiesel B, Woehrer A, et al. 5-Aminolevulinic acid induced fluorescence is a powerful intraoperative marker for precise histopathological grading of gliomas with non-significant contrast-enhancement. PLoS One. 2013;8(10):e76988.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Stummer W, Tonn JC, Goetz C, et al. 5-Aminolevulinic acid-derived tumor fluorescence: the diagnostic accuracy of visible fluorescence qualities as corroborated by spectrometry and histology and postoperative imaging. Neurosurgery. 2014;74(3):310320.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Chaichana KL, Jusue-Torres I, Lemos AM, et al. The butterfly effect on glioblastoma: is volumetric extent of resection more effective than biopsy for these tumors?. J Neurooncol. 2014;120(3):625634.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Sanai N, Berger MS. Glioma extent of resection and its impact on patient outcome. Neurosurgery. 2008;62(4):753766.

  • 21

    Gogos AJ, Young JS, Morshed RA, et al. Triple motor mapping: transcranial, bipolar, and monopolar mapping for supratentorial glioma resection adjacent to motor pathways. J Neurosurg. 2020;134(6):17281737.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Lukas RV, Wainwright DA, Ladomersky E, Sachdev S, Sonabend AM, Stupp R. Newly diagnosed glioblastoma: a review on clinical management. Oncology (Williston Park). 2019;33(3):91100.

    • Search Google Scholar
    • Export Citation
  • 23

    Gandhi S, Tayebi Meybodi A, Belykh E, et al. Survival outcomes among patients with high-grade glioma treated with 5-aminolevulinic acid-guided surgery: a systematic review and meta-analysis. Front Oncol. 2019;9:620.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Stummer W, Reulen HJ, Meinel T, et al. Extent of resection and survival in glioblastoma multiforme: identification of and adjustment for bias. Neurosurgery. 2008;62(3):564576.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    von Campe G, Moschopulos M, Hefti M. 5-Aminolevulinic acid-induced protoporphyrin IX fluorescence as immediate intraoperative indicator to improve the safety of malignant or high-grade brain tumor diagnosis in frameless stereotactic biopsies. Acta Neurochir (Wien). 2012;154(4):585588.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26

    Akshulakov SK, Kerimbayev TT, Biryuchkov MY, Urunbayev YA, Farhadi DS, Byvaltsev VA. Current trends for improving safety of stereotactic brain biopsies: advanced optical methods for vessel avoidance and tumor detection. Front Oncol. 2019;9:947.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Millesi M, Kiesel B, Wöhrer A, et al. Is intraoperative pathology needed if 5-aminolevulinic-acid-induced tissue fluorescence is found in stereotactic brain tumor biopsy?. Neurosurgery. 2020;86(3):366373.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Gulsen S. Achieving higher diagnostic results in stereotactic brain biopsy by simple and novel technique. Open Access Maced J Med Sci. 2015;3(1):99104.

  • 29

    Ferreira MP, Ferreira NP, Pereira Filho Ade A, Pereira Filho Gde A, Franciscatto AC. Stereotactic computed tomography-guided brain biopsy: diagnostic yield based on a series of 170 patients. Surg Neurol. 2006;65(suppl 1):S27S32.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30

    Schwartz TH, Morgenstern PF, Anand VK. Lessons learned in the evolution of endoscopic skull base surgery. J Neurosurg. 2019;130(2):337346.

  • 31

    Di Somma A, Langdon C, de Notaris M, et al. Combined and simultaneous endoscopic endonasal and transorbital surgery for a Meckel’s cave schwannoma: technical nuances of a mini-invasive, multiportal approach. J Neurosurg. 2020;134(6):18361845.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Quon JL, Kim LH, Hwang PH, et al. Transnasal endoscopic approach for pediatric skull base lesions: a case series. J Neurosurg Pediatr. 2019;24(3):246257.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33

    Little AS, Kelly DF, White WL, et al. Results of a prospective multicenter controlled study comparing surgical outcomes of microscopic versus fully endoscopic transsphenoidal surgery for nonfunctioning pituitary adenomas: the Transsphenoidal Extent of Resection (TRANSSPHER) Study. J Neurosurg. 2019;132(4):10431053.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Kim KR, Park JY. The technical feasibility of unilateral biportal endoscopic decompression for the unpredicted complication following minimally invasive transforaminal lumbar interbody fusion: case report. Neurospine. 2020;17(1)(suppl 1):S154S159.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Ohara Y, Nakajima Y, Kimura T, Kikuchi N, Sagiuchi T. Full-endoscopic transcervical ventral decompression for pathologies of craniovertebral junction: case series. Neurospine. 2020;17(1)(suppl 1):S138S144.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Langer DJ, White TG, Schulder M, Boockvar JA, Labib M, Lawton MT. Advances in intraoperative optics: a brief review of current exoscope platforms. Oper Neurosurg (Hagerstown). 2020;19(1):8493.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 37

    Plaha P, Livermore LJ, Voets N, Pereira E, Cudlip S. Minimally invasive endoscopic resection of intraparenchymal brain tumors. World Neurosurg. 2014;82(6):11981208.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Wilbers E, Ewelt C, Schipmann S, Stummer W, Klingenhöfer M. Illumination in spinal surgery depending on different approaches and light sources. World Neurosurg. 2017;105:585590.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Orringer DA, Golby A, Jolesz F. Neuronavigation in the surgical management of brain tumors: current and future trends. Expert Rev Med Devices. 2012;9(5):491500.

  • 40

    Suero Molina E, Stögbauer L, Jeibmann A, Warneke N, Stummer W. Validating a new generation filter system for visualizing 5-ALA-induced PpIX fluorescence in malignant glioma surgery: a proof of principle study. Acta Neurochir (Wien). 2020;162(4):785793.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41

    Lau D, Hervey-Jumper SL, Chang S, et al. A prospective Phase II clinical trial of 5-aminolevulinic acid to assess the correlation of intraoperative fluorescence intensity and degree of histologic cellularity during resection of high-grade gliomas. J Neurosurg. 2016;124(5):13001309.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Erkkilä MT, Reichert D, Hecker-Denschlag N, et al. Surgical microscope with integrated fluorescence lifetime imaging for 5-aminolevulinic acid fluorescence-guided neurosurgery. J Biomed Opt. 2020;25(7):071202.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43

    Erkkilä MT, Bauer B, Hecker-Denschlag N, et al. Widefield fluorescence lifetime imaging of protoporphyrin IX for fluorescence-guided neurosurgery: an ex vivo feasibility study. J Biophotonics. 2019;12(6):e201800378.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44

    Widhalm G, Wolfsberger S, Minchev G, et al. 5-Aminolevulinic acid is a promising marker for detection of anaplastic foci in diffusely infiltrating gliomas with nonsignificant contrast enhancement. Cancer. 2010;116(6):15451552.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Widhalm G, Minchev G, Woehrer A, et al. Strong 5-aminolevulinic acid-induced fluorescence is a novel intraoperative marker for representative tissue samples in stereotactic brain tumor biopsies. Neurosurg Rev. 2012;35(3):381391.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    Morshed RA, Han SJ, Lau D, Berger MS. Wavelength-specific lighted suction instrument for 5-aminolevulinic acid fluorescence-guided resection of deep-seated malignant glioma: technical note. J Neurosurg. 2018;128(5):14481453.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Rapp M, Kamp M, Steiger HJ, Sabel M. Endoscopic-assisted visualization of 5-aminolevulinic acid-induced fluorescence in malignant glioma surgery: a technical note. World Neurosurg. 2014;82(1-2):e277e279.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48

    Bettag C, Hussein A, Behme D, Maragkou T, Rohde V, Mielke D. Endoscopic fluorescence-guided resection increases radicality in glioblastoma surgery. Oper Neurosurg (Hagerstown). 2020;18(1):4146.

    • Crossref
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 2204 2200 196
Full Text Views 184 184 34
PDF Downloads 275 275 49
EPUB Downloads 0 0 0