A population-normalized tractographic fiber atlas of the anterior limb of the internal capsule: relevance to surgical neuromodulation

Garrett P. BanksDepartment of Neurosurgery, Columbia University Medical Center, New York, New York;

Search for other papers by Garrett P. Banks in
Current site
Google Scholar
PubMed
Close
 MD
,
Sarah R. HeilbronnerDepartment of Neuroscience, University of Minnesota, Minneapolis, Minnesota;

Search for other papers by Sarah R. Heilbronner in
Current site
Google Scholar
PubMed
Close
 PhD
,
Wayne GoodmanDepartment of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas; and

Search for other papers by Wayne Goodman in
Current site
Google Scholar
PubMed
Close
 MD
, and
Sameer A. ShethDepartment of Neurosurgery, Baylor College of Medicine, Houston, Texas

Search for other papers by Sameer A. Sheth in
Current site
Google Scholar
PubMed
Close
 MD, PhD
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $525.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $525.00
USD  $624.00
Print or Print + Online Sign in

OBJECTIVE

The anterior limb of the internal capsule (ALIC) is a white matter highway that connects several subcortical structures to the prefrontal cortex. Although surgical interventions in the ALIC have been used to treat a number of psychiatric illnesses, there is significant debate regarding what fibers are targeted for intervention. This debate is partially due to an incomplete understanding of connectivity in the region.

METHODS

To better understand this complex structure, the authors employed a novel tractography-based approach to examine how fibers from the thalamus and subthalamic nucleus (STN) traverse the ALIC. Furthermore, the authors analyzed connections from the medial dorsal nucleus, anterior nucleus, and ventral anterior nucleus of the thalamus.

RESULTS

The results showed that there is an organizational gradient of thalamic fibers medially and STN fibers laterally in the ALIC that fades more anteriorly. These findings, in combination with the known corticotopic organization described by previous studies, allow for a more thorough understanding of the organization of the white matter fibers in the ALIC.

CONCLUSIONS

These results are important for understanding and targeting of neuromodulatory therapies in the ALIC and may help explain why differences in therapeutic effect are observed for different areas of the ALIC.

ABBREVIATIONS

AC = anterior commissure; ACC = anterior cingulate cortex; ALIC = anterior limb of the internal capsule; AN = anterior nucleus; ATR = anterior thalamic radiation; DBS = deep brain stimulation; dPFC = dorsal prefrontal cortex; FA = fractional anisotropy; FSL = FMRIB Software Library; HCP = Human Connectome Project; MD = medial dorsal; OCD = obsessive-compulsive disorder; OFC = orbitofrontal cortex; PFC = prefrontal cortex; SD = standard deviation; STN = subthalamic nucleus; VA = ventral anterior.

Supplementary Materials

    • Supplementary Data (PDF 6,039 KB)
  • Collapse
  • Expand

Illustration from Xu et al. (pp 1418–1430). With permission from Juan Carlos Fernandez-Miranda and The Neurosurgical Atlas by Aaron Cohen-Gadol.

  • 1

    Bonelli RM, Cummings JL. Frontal-subcortical circuitry and behavior. Dialogues Clin Neurosci. 2007;9(2):141151.

  • 2

    Alexander GE, DeLong MR, Strick PL. Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu Rev Neurosci. 1986;9:357381.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Sheth SA, Mian MK, Patel SR, et al. Human dorsal anterior cingulate cortex neurons mediate ongoing behavioural adaptation. Nature. 2012;488(7410):218221.

  • 4

    Peters SK, Dunlop K, Downar J. Cortico-striatal-thalamic loop circuits of the salience network: a central pathway in psychiatric disease and treatment. Front Syst Neurosci. 2016;10:104.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Fettes P, Schulze L, Downar J. Cortico-striatal-thalamic loop circuits of the orbitofrontal cortex: promising therapeutic targets in psychiatric illness. Front Syst Neurosci. 2017;11:25.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Gunaydin LA, Kreitzer AC. Cortico-basal ganglia circuit function in psychiatric disease. Annu Rev Physiol. 2016;78:327350.

  • 7

    Bergfeld IO, Mantione M, Hoogendoorn ML, et al. Deep brain stimulation of the ventral anterior limb of the internal capsule for treatment-resistant depression: a randomized clinical trial. JAMA Psychiatry. 2016;73(5):456464.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Greenberg BD, Gabriels LA, Malone DA Jr, et al. Deep brain stimulation of the ventral internal capsule/ventral striatum for obsessive-compulsive disorder: worldwide experience. Mol Psychiatry. 2010;15(1):6479.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Malone DA Jr, Dougherty DD, Rezai AR, et al. Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biol Psychiatry. 2009;65(4):267275.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Denys D, Graat I, Mocking R, et al. Efficacy of Deep brain stimulation of the ventral anterior limb of the internal capsule for refractory obsessive-compulsive disorder: a clinical cohort of 70 patients. Am J Psychiatry. 2020;177(3):265271.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Patel SR, Aronson JP, Sheth SA, Eskandar EN. Lesion procedures in psychiatric neurosurgery. World Neurosurg. 2013;80(3-4):S31.e39e16.

  • 12

    Miguel EC, Lopes AC, McLaughlin NCR, et al. Evolution of gamma knife capsulotomy for intractable obsessive-compulsive disorder. Mol Psychiatry. 2019;24(2):218240.

  • 13

    Christmas D, Eljamel MS, Butler S, et al. Long term outcome of thermal anterior capsulotomy for chronic, treatment refractory depression. J Neurol Neurosurg Psychiatry. 2011;82(6):594600.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Flaherty AW, Williams ZM, Amirnovin R, et al. Deep brain stimulation of the anterior internal capsule for the treatment of Tourette syndrome: technical case report. Neurosurgery. 2005;57(4)(suppl):E403.

    • Search Google Scholar
    • Export Citation
  • 15

    Plow EB, Malone DA Jr, Machado A. Deep brain stimulation of the ventral striatum/anterior limb of the internal capsule in thalamic pain syndrome: study protocol for a pilot randomized controlled trial. Trials. 2013;14:241.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Baldermann JC, Melzer C, Zapf A, et al. Connectivity profile predictive of effective deep brain stimulation in obsessive-compulsive disorder. Biol Psychiatry. 2019;85(9):735743.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Liebrand LC, Caan MWA, Schuurman PR, et al. Individual white matter bundle trajectories are associated with deep brain stimulation response in obsessive-compulsive disorder. Brain Stimul. 2019;12(2):353360.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Tyagi H, Apergis-Schoute AM, Akram H, et al. A randomized trial directly comparing ventral capsule and anteromedial subthalamic nucleus stimulation in obsessive-compulsive disorder: clinical and imaging evidence for dissociable effects. Biol Psychiatry. 2019;85(9):726734.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Safadi Z, Grisot G, Jbabdi S, et al. Functional segmentation of the anterior limb of the internal capsule: linking white matter abnormalities to specific connections. J Neurosci. 2018;38(8):21062117.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Nanda P, Banks GP, Pathak YJ, Sheth SA. Connectivity-based parcellation of the anterior limb of the internal capsule. Hum Brain Mapp. 2017;38(12):61076117.

  • 21

    Axer H, Lippitz BE, von Keyserlingk DG. Morphological asymmetry in anterior limb of human internal capsule revealed by confocal laser and polarized light microscopy. Psychiatry Res. 1999;91(3):141154.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Gunalan K, Chaturvedi A, Howell B, et al. Creating and parameterizing patient-specific deep brain stimulation pathway-activation models using the hyperdirect pathway as an example. PLoS One. 2017;12(4):e0176132.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Whitmer D, de Solages C, Hill B, Yu H, Henderson JM, Bronte-Stewart H. High frequency deep brain stimulation attenuates subthalamic and cortical rhythms in Parkinson’s disease. Front Hum Neurosci. 2012;6:155.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Jbabdi S, Lehman JF, Haber SN, Behrens TE. Human and monkey ventral prefrontal fibers use the same organizational principles to reach their targets: tracing versus tractography. J Neurosci. 2013;33(7):31903201.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Haynes WI, Haber SN. The organization of prefrontal-subthalamic inputs in primates provides an anatomical substrate for both functional specificity and integration: implications for Basal Ganglia models and deep brain stimulation. J Neurosci. 2013;33(11):48044814.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K. The WU-Minn Human Connectome Project: an overview. Neuroimage. 2013;80:6279.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27

    Sotiropoulos SN, Moeller S, Jbabdi S, et al. Effects of image reconstruction on fiber orientation mapping from multichannel diffusion MRI: reducing the noise floor using SENSE. Magn Reson Med. 2013;70(6):16821689.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Glasser MF, Sotiropoulos SN, Wilson JA, et al. The minimal preprocessing pipelines for the Human Connectome Project. Neuroimage. 2013;80:105124.

  • 29

    Andersson JLR, Skare S, Ashburner J. How to correct susceptibility distortions in spin-echo echo-planar images: application to diffusion tensor imaging. Neuroimage. 2003;20(2):870888.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Andersson JLR, Sotiropoulos SN. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage. 2016;125:10631078.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Andersson JLR, Sotiropoulos SN. Non-parametric representation and prediction of single- and multi-shell diffusion-weighted MRI data using Gaussian processes. Neuroimage. 2015;122:166176.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Grabner G, Janke AL, Budge MM, Smith D, Pruessner J, Collins DL. Symmetric atlasing and model based segmentation: an application to the hippocampus in older adults. Med Image Comput Comput Assist Interv. 2006;9(Pt 2):5866.

    • Search Google Scholar
    • Export Citation
  • 33

    Jenkinson M, Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal. 2001;5(2):143156.

  • 34

    Jenkinson M, Bannister P, Brady M, Smith S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. Neuroimage. 2002;17(2):825841.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Mazziotta J, Toga A, Evans A, et al. A probabilistic atlas and reference system for the human brain: International Consortium for Brain Mapping (ICBM). Philos Trans R Soc Lond B Biol Sci. 2001;356(1412):12931322.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36

    Behrens TE, Woolrich MW, Jenkinson M, et al. Characterization and propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson Med. 2003;50(5):10771088.

  • 37

    Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW. Probabilistic diffusion tractography with multiple fibre orientations: what can we gain?. Neuroimage. 2007;34(1):144155.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Ewert S, Plettig P, Li N, et al. Toward defining deep brain stimulation targets in MNI space: a subcortical atlas based on multimodal MRI, histology and structural connectivity. Neuroimage. 2018;170:271282.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Child ND, Benarroch EE. Anterior nucleus of the thalamus: functional organization and clinical implications. Neurology. 2013;81(21):18691876.

  • 40

    Haber SN, Yendiki A, Jbabdi S. Four deep brain stimulation targets for obsessive-compulsive disorder: are they different?. Biol Psychiatry. 2021;90(10):667677.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Grier MD, Zimmermann J, Heilbronner SR. Estimating brain connectivity with diffusion-weighted magnetic resonance imaging: promise and peril. Biol Psychiatry Cogn Neurosci Neuroimaging. 2020;5(9):846854.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Nuttin B, Cosyns P, Demeulemeester H, Gybels J, Meyerson B. Electrical stimulation in anterior limbs of internal capsules in patients with obsessive-compulsive disorder. Lancet. 1999;354(9189):1526.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 43

    Luyten L, Hendrickx S, Raymaekers S, Gabriëls L, Nuttin B. Electrical stimulation in the bed nucleus of the stria terminalis alleviates severe obsessive-compulsive disorder. Mol Psychiatry. 2016;21(9):12721280.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Senova S, Clair AH, Palfi S, Yelnik J, Domenech P, Mallet L. Deep brain stimulation for refractory obsessive-compulsive disorder: towards an individualized approach. Front Psychiatry. 2019;10:905.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Voon V. Toward precision medicine: prediction of deep brain stimulation targets of the ventral internal capsule for obsessive-compulsive disorder. Biol Psychiatry. 2019;85(9):708710.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    Coenen VA, Panksepp J, Hurwitz TA, Urbach H, Mädler B. Human medial forebrain bundle (MFB) and anterior thalamic radiation (ATR): imaging of two major subcortical pathways and the dynamic balance of opposite affects in understanding depression. J Neuropsychiatry Clin Neurosci. 2012;24(2):223236.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 47

    Li N, Baldermann JC, Kibleur A, et al. A unified connectomic target for deep brain stimulation in obsessive-compulsive disorder. Nat Commun. 2020;11(1):3364.

  • 48

    Coenen VA, Schlaepfer TE, Sajonz B, et al. Tractographic description of major subcortical projection pathways passing the anterior limb of the internal capsule. Corticopetal organization of networks relevant for psychiatric disorders. Neuroimage Clin. 2020;25:102165.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    Lehman JF, Greenberg BD, McIntyre CC, Rasmussen SA, Haber SN. Rules ventral prefrontal cortical axons use to reach their targets: implications for diffusion tensor imaging tractography and deep brain stimulation for psychiatric illness. J Neurosci. 2011;31(28):1039210402.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 660 660 88
Full Text Views 206 206 36
PDF Downloads 251 251 55
EPUB Downloads 0 0 0