Editorial. 7T MRI for neuronavigation: toward better visualization during functional surgery

Jordy TasserieDivision of Neurosurgery, Toronto Western Hospital, University of Toronto, Ontario, Canada

Search for other papers by Jordy Tasserie in
Current site
Google Scholar
PubMed
Close
 PhD
and
Andres M. LozanoDivision of Neurosurgery, Toronto Western Hospital, University of Toronto, Ontario, Canada

Search for other papers by Andres M. Lozano in
Current site
Google Scholar
PubMed
Close
 MD, PhD
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $525.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $624.00
USD  $45.00
USD  $525.00
USD  $624.00
Print or Print + Online Sign in
  • Collapse
  • Expand

Illustration from Xu et al. (pp 1418–1430). With permission from Juan Carlos Fernandez-Miranda and The Neurosurgical Atlas by Aaron Cohen-Gadol.

  • 1

    Krauss JK, Lipsman N, Aziz T, et al. Technology of deep brain stimulation: current status and future directions. Nat Rev Neurol. 2021;17(2):7587.

  • 2

    Voormolen EH, Diederen SJH, Woerdeman P, et al. Implications of extracranial distortion in ultra-high-field magnetic resonance imaging for image-guided cranial neurosurgery. World Neurosurg. 2019;126:e250e258.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Yarach U, Luengviriya C, Stucht D, Godenschweger F, Schulze P, Speck O. Correction of B0-induced geometric distortion variations in prospective motion correction for 7T MRI. MAGMA. 2016;29(3):319332.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4

    Rusheen AE, Goyal A, Owen RL, et al. The development of ultra–high field MRI guidance technology for neuronavigation. J Neurosurg. Published online March 25, 2022. doi: 10.3171/2021.11.JNS211078

    • Search Google Scholar
    • Export Citation
  • 5

    Abosch A, Yacoub E, Ugurbil K, Harel N. An assessment of current brain targets for deep brain stimulation surgery with susceptibility-weighted imaging at 7 tesla. Neurosurgery. 2010;67(6):17451756.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Cho ZH, Min HK, Oh SH, et al. Direct visualization of deep brain stimulation targets in Parkinson disease with the use of 7-tesla magnetic resonance imaging. J Neurosurg. 2010;113(3):639647.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Duchin Y, Shamir RR, Patriat R, et al. Patient-specific anatomical model for deep brain stimulation based on 7 Tesla MRI. PLoS One. 2018;13(8):e0201469.

  • 8

    Sudhyadhom A, Haq IU, Foote KD, Okun MS, Bova FJ. A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). Neuroimage. 2009;47(Suppl 2):T44T52.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Boutet A, Loh A, Chow CT, et al. A literature review of magnetic resonance imaging sequence advancements in visualizing functional neurosurgery targets. J Neurosurg. 2021;135(5):14451458.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Liu T, Eskreis-Winkler S, Schweitzer AD, et al. Improved subthalamic nucleus depiction with quantitative susceptibility mapping. Radiology. 2013;269(1):216223.

  • 11

    Plantinga BR, Temel Y, Duchin Y, et al. Individualized parcellation of the subthalamic nucleus in patients with Parkinson’s disease with 7T MRI. Neuroimage. 2018;168:403411.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Shamir RR, Duchin Y, Kim J, et al. Microelectrode recordings validate the clinical visualization of subthalamic-nucleus based on 7T magnetic resonance imaging and machine learning for deep brain stimulation surgery. Neurosurgery. 2019;84(3):749757.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Engelhardt J, Cuny E, Guehl D, et al. Prediction of clinical deep brain stimulation target for essential tremor from 1.5 Tesla MRI anatomical landmarks. Front Neurol. 2021;12:620360.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Thani NB, Bala A, Swann GB, Lind CR. Accuracy of postoperative computed tomography and magnetic resonance image fusion for assessing deep brain stimulation electrodes. Neurosurgery. 2011;69(1):207214.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Coenen VA, Mädler B, Schiffbauer H, Urbach H, Allert N. Individual fiber anatomy of the subthalamic region revealed with diffusion tensor imaging: a concept to identify the deep brain stimulation target for tremor suppression. Neurosurgery. 2011;68(4):10691076.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 1

    Gross RE, Krack P, Rodriguez-Oroz MC, Rezai AR, Benabid AL. Electrophysiological mapping for the implantation of deep brain stimulators for Parkinson’s disease and tremor. Mov Disord. 2006;21(Suppl 14):S259S283.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Patriat R, Cooper SE, Duchin Y, et al. Individualized tractography-based parcellation of the globus pallidus pars interna using 7T MRI in movement disorder patients prior to DBS surgery. Neuroimage. 2018;178:198209.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Lenglet C, Abosch A, Yacoub E, De Martino F, Sapiro G, Harel N. Comprehensive in vivo mapping of the human basal ganglia and thalamic connectome in individuals using 7T MRI. PLoS One. 2012;7(1):e29153.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Plantinga BR, Temel Y, Duchin Y, et al. Individualized parcellation of the subthalamic nucleus in patients with Parkinson’s disease with 7T MRI. Neuroimage. 2018;168:403411.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    McClelland S III. A cost analysis of intraoperative microelectrode recording during subthalamic stimulation for Parkinson’s disease. Mov Disord. 2011;26(8):14221427.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 745 745 214
Full Text Views 132 132 50
PDF Downloads 165 165 66
EPUB Downloads 0 0 0