Surgical approaches to refractory central lobule epilepsy: a systematic review on the role of resection, ablation, and stimulation in the contemporary era

View More View Less
  • 1 Department of Neurologic Surgery, Mayo Clinic, Rochester; and
  • | 2 Department of Neurology, Mayo Clinic, Rochester, Minnesota
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $45.00
USD  $515.00
USD  $612.00
Print or Print + Online Sign in

OBJECTIVE

Epilepsy originating from the central lobule (i.e., the primary sensorimotor cortex) is a challenging entity to treat given its involvement of eloquent cortex. The objective of this study was to review available evidence on treatment options for central lobule epilepsy.

METHODS

A comprehensive literature search (PubMed/Medline, EMBASE, and Scopus) was conducted for studies (1990 to date) investigating postoperative outcomes for central lobule epilepsy. The primary and secondary endpoints were seizure freedom at last follow-up and postoperative neurological deficit, respectively. The following procedures were included: open resection, multiple subpial transections (MSTs), laser and radiofrequency ablation, deep brain stimulation (DBS), responsive neurostimulation (RNS), and continuous subthreshold cortical stimulation (CSCS).

RESULTS

A total of 52 studies and 504 patients were analyzed. Most evidence was based on open resection, yielding a total of 400 patients (24 studies), of whom 62% achieved seizure freedom at a mean follow-up of 48 months. A new or worsened motor deficit occurred in 44% (permanent in 19%). Forty-six patients underwent MSTs, of whom 16% achieved seizure freedom and 30% had a neurological deficit (permanent in 12%). There were 6 laser ablation cases (cavernomas in 50%) with seizure freedom in 4 patients and 1 patient with temporary motor deficit. There were 5 radiofrequency ablation cases, with 1 patient achieving seizure freedom, 2 patients each with Engel class III and IV outcomes, and 2 patients with motor deficit. The mean seizure frequency reduction at the last follow-up was 79% for RNS (28 patients), 90% for CSCS (15 patients), and 73% for DBS (4 patients). There were no cases of temporary or permanent neurological deficit in the CSCS or DBS group.

CONCLUSIONS

This review highlights the safety and efficacy profile of resection, ablation, and stimulation for refractory central lobe epilepsy. Resection of localized regions of epilepsy onset zones results in good rates of seizure freedom (62%); however, nearly 20% of patients had permanent motor deficits. The authors hope that this review will be useful to providers and patients when tailoring decision-making for this intricate pathology.

ABBREVIATIONS

CSCS = continuous subthreshold cortical stimulation; DBS = deep brain stimulation; ECoG = electrocorticography; LITT = laser interstitial thermal therapy; MST = multiple subpial transection; RFA = radiofrequency ablation; RNS = responsive neurostimulation; SEEG = stereoelectroencephalography.

Schematics of transseptal interforniceal resection of a superiorly recessed colloid cyst. ©Mark Souweidane, published with permission. See the article by Tosi et al. (pp 813–819).

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $515.00
USD  $612.00
  • 1

    Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937;60(4):389443.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2

    Kropf E, Syan SK, Minuzzi L, Frey BN. From anatomy to function: the role of the somatosensory cortex in emotional regulation. Br J Psychiatry. 2019;41(3):261269.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3

    Patra A, Kaur H, Chaudhary P, Asghar A, Singal A. Morphology and morphometry of human paracentral lobule: an anatomical study with its application in neurosurgery. Asian J Neurosurg. 2021;16(2):349354.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Farrell DF, Burbank N, Lettich E, Ojemann GA. Individual variation in human motor-sensory (rolandic) cortex. J Clin Neurophysiol. 2007;24(3):286293.

  • 5

    Borich MR, Brodie SM, Gray WA, Ionta S, Boyd LA. Understanding the role of the primary somatosensory cortex: opportunities for rehabilitation. Neuropsychologia. 2015;79(Pt B):246255.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Haseeb A, Asano E, Juhász C, Shah A, Sood S, Chugani HT. Young patients with focal seizures may have the primary motor area for the hand in the postcentral gyrus. Epilepsy Res. 2007;76(2-3):131139.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Seo JP, Jang SH. Different characteristics of the corticospinal tract according to the cerebral origin: DTI study. AJNR Am J Neuroradiol. 2013;34(7):13591363.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8

    Manford M, Hart YM, Sander JWA, Shorvon SD. National General Practice Study of Epilepsy (NGPSE): partial seizure patterns in a general population. Neurology. 1992;42(10):19111917.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 9

    Penfield W. Ablation of abnormal cortex in cerebral palsy. J Neurol Neurosurg Psychiatry. 1952;15(2):7378.

  • 10

    Pilcher C, Meacham WF, Holbrook TJ. Partial excision of the motor cortex in treatment of jacksonian convulsions: results in 41 cases. Arch Surg. 1947;54(6):633643.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11

    Kerezoudis P, Grewal SS, Stead M, Lundstrom BN, Britton JW, Shin C, et al. Chronic subthreshold cortical stimulation for adult drug-resistant focal epilepsy: safety, feasibility, and technique. J Neurosurg. 2018;129(2):533543.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Cossu M, Fuschillo D, Casaceli G, Pelliccia V, Castana L, Mai R, et al. Stereoelectroencephalography-guided radiofrequency thermocoagulation in the epileptogenic zone: a retrospective study on 89 cases. J Neurosurg. 2015;123(6):13581367.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Gupta K, Cabaniss B, Kheder A, Gedela S, Koch P, Hewitt KC, et al. Stereotactic MRI-guided laser interstitial thermal therapy for extratemporal lobe epilepsy. Epilepsia. 2020;61(8):17231734.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Lundstrom BN, Gompel JV, Khadjevand F, Worrell G, Stead M. Chronic subthreshold cortical stimulation and stimulation-related EEG biomarkers for focal epilepsy. Brain Commun. 2019;1(1):fcz010.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Wallace BC, Dahabreh IJ, Trikalinos TA, Lau J, Trow P, Schmid CH. Closing the gap between methodologists and end-users: R as a computational back-end. J Stat Softw. 2012;49(1):115.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16

    Aung T, Punia V, Katagiri M, Prayson R, Wang I, Gonzalez-Martinez JA. The feasibility and value of extraoperative and adjuvant intraoperative stereoelectroencephalography in rolandic and perirolandic epilepsies. J Neurosurg Pediatr. 2021;27(1):3646.

    • Search Google Scholar
    • Export Citation
  • 17

    Barba C, Montanaro D, Frijia F, Giordano F, Blümcke I, Genitori L, et al. Focal cortical dysplasia type IIb in the rolandic cortex: functional reorganization after early surgery documented by passive task functional MRI. Epilepsia. 2012;53(8):e141e145.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Behdad A, Limbrick DD Jr, Bertrand ME, Smyth MD. Epilepsy surgery in children with seizures arising from the rolandic cortex. Epilepsia. 2009;50(6):14501461.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Benifla M, Sala F Jr, Jane J, Otsubo H, Ochi A, Drake J, et al. Neurosurgical management of intractable rolandic epilepsy in children: role of resection in eloquent cortex. Clinical article. J Neurosurg Pediatr. 2009;4(3):199216.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Blount JP, Langburt W, Otsubo H, Chitoku S, Ochi A, Weiss S, et al. Multiple subpial transections in the treatment of pediatric epilepsy. J Neurosurg. 2004;100(2 Suppl Pediatrics):118124.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Catenoix H, Mauguière F, Guénot M, Ryvlin P, Bissery A, Sindou M, Isnard J. SEEG-guided thermocoagulations: a palliative treatment of nonoperable partial epilepsies. Neurology. 2008;71(21):17191726.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Chabardès S, Kahane P, Minotti L, Koudsie A, Hirsch E, Benabid AL. Deep brain stimulation in epilepsy with particular reference to the subthalamic nucleus. Epileptic Disord. 2002;4(suppl 3):S83S93.

    • Search Google Scholar
    • Export Citation
  • 23

    Cohen-Gadol AA, Britton JW, Collignon FP, Bates LM, Cascino GD, Meyer FB. Nonlesional central lobule seizures: use of awake cortical mapping and subdural grid monitoring for resection of seizure focus. J Neurosurg. 2003;98(6):12551262.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Cukiert A, Buratini JA, Machado E, Sousa A, Vieira J, Forster C, et al. Seizure’s outcome after cortical resections including the face and tongue rolandic areas in patients with refractory epilepsy and normal MRI submitted to subdural grids’ implantation. Arq Neuropsiquiatr. 2001;59(3-B):717721.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Cui ZQ, Ling ZP, Song HF, Hu S, Sun GC, Chen XL, et al. Combining pyramidal tract mapping, microscopic-based neuronavigation, and intraoperative magnetic resonance imaging improves outcome of epilepsy foci resection in the sensorimotor cortex. Turk Neurosurg. 2014;24(4):538545.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    D’Giano CH, Del C García M, Pomata H, Rabinowicz AL. Treatment of refractory partial status epilepticus with multiple subpial transection: case report. Seizure. 2001;10(5):382385.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    de Oliveira RS, Santos MV, Terra VC, Sakamoto AC, Machado HR. Tailored resections for intractable rolandic cortex epilepsy in children: a single-center experience with 48 consecutive cases. Childs Nerv Syst. 2011;27(5):779785.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Dimova P, de Palma L, Job-Chapron AS, Minotti L, Hoffmann D, Kahane P. Radiofrequency thermocoagulation of the seizure-onset zone during stereoelectroencephalography. Epilepsia. 2017;58(3):381392.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Delev D, Send K, Wagner J, von Lehe M, Ormond DR, Schramm J, Grote A. Epilepsy surgery of the rolandic and immediate perirolandic cortex: surgical outcome and prognostic factors. Epilepsia. 2014;55(10):15851593.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Elisevich K, Jenrow K, Schuh L, Smith B. Long-term electrical stimulation-induced inhibition of partial epilepsy. Case report. J Neurosurg. 2006;105(6):894897.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Guénot M, Isnard J, Catenoix H, Mauguière F, Sindou M. SEEG-guided RF-thermocoagulation of epileptic foci: a therapeutic alternative for drug-resistant non-operable partial epilepsies. Adv Tech Stand Neurosurg. 2011;36:6178.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Hufnagel A, Zentner J, Fernandez G, Wolf HK, Schramm J, Elger CE. Multiple subpial transection for control of epileptic seizures: effectiveness and safety. Epilepsia. 1997;38(6):678688.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Kim YH, Kim CH, Kim JS, Lee SK, Chung CK. Resection frequency map after awake resective surgery for non-lesional neocortical epilepsy involving eloquent areas. Acta Neurochir (Wien). 2011;153(9):17391749.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34

    Kim YH, Kim JS, Lee SK, Chung CK. Neurologic outcome after resection of parietal lobe including primary somatosensory cortex: implications of additional resection of posterior parietal cortex. World Neurosurg. 2017;106:884890.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Kirsch HE, Sepkuty JP, Crone NE. Multimodal functional mapping of sensorimotor cortex prior to resection of an epileptogenic perirolandic lesion. Epilepsy Behav. 2004;5(3):407410.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Xue H, Cai L, Zhang X, Qiao L, Li Y. Surgical resection of epileptogenic cortical dysplasia in precentral gyrus. Epilepsy Behav Case Rep. 2013;1:5255.

  • 37

    Willemse RB, Hillebrand A, Ronner HE, Vandertop WP, Stam CJ. Magnetoencephalographic study of hand and foot sensorimotor organization in 325 consecutive patients evaluated for tumor or epilepsy surgery. Neuroimage Clin. 2015;10:4653.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38

    Wyler AR, Wilkus RJ, Rostad SW, Vossler DG. Multiple subpial transections for partial seizures in sensorimotor cortex. Neurosurgery. 1995;37(6):11221128.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    Velasco AL, Velasco F, Velasco M, María Núñez J, Trejo D, García I. Neuromodulation of epileptic foci in patients with non-lesional refractory motor epilepsy. Int J Neural Syst. 2009;19(3):139147.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Wang X, Du J, Wang D, Xu C, Ren Z, Wang Y, et al. Long-term outcome of unilateral deep brain stimulation of the subthalamic nucleus for a patient with drug-resistant focal myoclonic seizure. Ann Transl Med. 2020;8(1):18.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Wang S, Zhang H, Liu C, Liu Q, Ji T, Wang W, et al. Surgical treatment of children with drug-resistant epilepsy involving the Rolandic area. Epileptic Disord. 2021;23(2):376384.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Schramm J, Aliashkevich AF, Grunwald T. Multiple subpial transections: outcome and complications in 20 patients who did not undergo resection. J Neurosurg. 2002;97(1):3947.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43

    Sarkis RA, Jehi LE, Bingaman WE, Najm IM. Surgical outcome following resection of rolandic focal cortical dysplasia. Epilepsy Res. 2010;90(3):240247.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Sandok EK, Cascino GD. Surgical treatment for perirolandic lesional epilepsy. Epilepsia. 1998;39(suppl 4):S42S48.

  • 45

    Rougier A, Sundstrom L, Claverie B, Saint-Hilaire JM, Labrecque R, Lurton D, Bouvier G. Multiple subpial transection: report of 7 cases. Epilepsy Res. 1996;24(1):5763.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 46

    Pondal-Sordo M, Diosy D, Téllez-Zenteno JF, Girvin JP, Wiebe S. Epilepsy surgery involving the sensory-motor cortex. Brain. 2006;129(Pt 12):33073314.

  • 47

    Panov F, Ganaha S, Haskell J, Fields M, La Vega-Talbott M, Wolf S, et al. Safety of responsive neurostimulation in pediatric patients with medically refractory epilepsy. J Neurosurg Pediatr. 2020;26(5):525532.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 48

    Otsubo H, Chitoku S, Ochi A, Jay V, Rutka JT, Smith ML, et al. Malignant rolandic-sylvian epilepsy in children: diagnosis, treatment, and outcomes. Neurology. 2001;57(4):590596.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 49

    Önal C, Otsubo H, Araki T, Chitoku S, Ochi A, Weiss S, et al. Complications of invasive subdural grid monitoring in children with epilepsy. J Neurosurg. 2003;98(5):10171026.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 50

    Mulligan LP, Spencer DD, Spencer SS. Multiple subpial transections: the Yale experience. Epilepsia. 2001;42(2):226229.

  • 51

    Mortazavi A, Elliott RJS, Phan TN, Schreiber J, Gaillard WD, Oluigbo CO. Responsive neurostimulation for the treatment of medically refractory epilepsy in pediatric patients: strategies, outcomes, and technical considerations. J Neurosurg Pediatr. 2021;28(1):5461.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 52

    Ma BB, Fields MC, Knowlton RC, Chang EF, Szaflarski JP, Marcuse LV, Rao VR. Responsive neurostimulation for regional neocortical epilepsy. Epilepsia. 2020;61(1):96106.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 53

    Mikuni N, Ikeda A, Yoneko H, Amano S, Hanakawa T, Fukuyama H, Hashimoto N. Surgical resection of an epileptogenic cortical dysplasia in the deep foot sensorimotor area. Epilepsy Behav. 2005;7(3):559562.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 54

    Levesque MF, Sutherling WW, Crandall PH. Surgery of central sensory motor and dorsolateral frontal lobe seizures. Stereotact Funct Neurosurg. 1992;58(1-4):168171.

  • 55

    Lehman R, Andermann F, Olivier A, Tandon PN, Quesney LF, Rasmussen TB. Seizures with onset in the sensorimotor face area: clinical patterns and results of surgical treatment in 20 patients. Epilepsia. 1994;35(6):11171124.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 56

    Kuo CH, Feroze AH, Poliachik SL, Hauptman JS, Novotny EJ Jr, Ojemann JG. Laser ablation therapy for pediatric patients with intracranial lesions in eloquent areas. World Neurosurg. 2019;121:e191e199.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 57

    Koubeissi MZ, Maciunas RJ, Tanner A, Lüders HO. Medically intractable seizures originating from the primary somatosensory hand area. Epileptic Disord. 2008;10(4):339348.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 58

    Jobst BC, Kapur R, Barkley GL, Bazil CW, Berg MJ, Bergey GK, et al. Brain-responsive neurostimulation in patients with medically intractable seizures arising from eloquent and other neocortical areas. Epilepsia. 2017;58(6):10051014.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 59

    Parker JJ, Jamiolkowski RM, Grant GA, Le S, Halpern CH. Hybrid fluoroscopic and neurophysiological targeting of responsive neurostimulation of the rolandic cortex. Oper Neurosurg (Hagerstown). 2021;21(3):E180E186.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 60

    Miller KJ, Burns TC, Grant GA, Halpern CH. Responsive stimulation of motor cortex for medically and surgically refractive epilepsy. Seizure. 2015;33:3840.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 61

    Marnet D, Devaux B, Chassoux F, Landré E, Mann M, Turak B, et al. Surgical resection of focal cortical dysplasias in the central region. Article in French. Neurochirurgie. 2008;54(3):399408.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 62

    Devaux B, Chassoux F, Landré E, Turak B, Daumas-Duport C, Chagot D, et al. Chronic intractable epilepsy associated with a tumor located in the central region: functional mapping data and postoperative outcome. Stereotact Funct Neurosurg.1997;69(1-4 Pt 2):229238.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 63

    Zhang G, Meng D, Liu Y, Yang K, Chen J, Su L, et al. Epileptic zone resection for magnetic resonance imaging-negative refractory epilepsy originating from the primary motor cortex. World Neurosurg. 2017;102:434441.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 64

    Yan H, Ibrahim GM. Resective epilepsy surgery involving eloquent cortex in the age of responsive neurostimulation: a value-based decision-making framework. Epilepsy Behav. 2019;99:106479.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 65

    Kumar A, Juhasz C, Asano E, Sundaram SK, Makki MI, Chugani DC, Chugani HT. Diffusion tensor imaging study of the cortical origin and course of the corticospinal tract in healthy children. AJNR Am J Neuroradiol. 2009;30(10):19631970.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 66

    Contento M, Pizzo F, López-Madrona VJ, Lagarde S, Makhalova J, Trébuchon A, et al. Changes in epileptogenicity biomarkers after stereotactic thermocoagulation. Epilepsia. 2021;62(9):20482059.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 67

    McGonigal A, Bartolomei F, Régis J, Guye M, Gavaret M, Trébuchon-Da Fonseca A, et al. Stereoelectroencephalography in presurgical assessment of MRI-negative epilepsy. Brain. 2007;130(Pt 12):31693183.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 68

    Krsek P, Maton B, Korman B, Pacheco-Jacome E, Jayakar P, Dunoyer C, et al. Different features of histopathological subtypes of pediatric focal cortical dysplasia. Ann Neurol. 2008;63(6):758769.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 69

    Roessler K, Heynold E, Buchfelder M, Stefan H, Hamer HM. Current value of intraoperative electrocorticography (iopECoG). Epilepsy Behav. 2019;91:2024.

  • 70

    van ’t Klooster MA, Leijten FSS, Huiskamp G, Ronner HE, Baayen JC, van Rijen PC, et al. High frequency oscillations in the intra-operative ECoG to guide epilepsy surgery ("The HFO Trial"): study protocol for a randomized controlled trial. Trials. 2015;16(1):422.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 71

    Morrell F, Whisler WW, Bleck TP. Multiple subpial transection: a new approach to the surgical treatment of focal epilepsy. J Neurosurg. 1989;70(2):231239.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 72

    Rolston JD, Deng H, Wang DD, Englot DJ, Chang EF. Multiple subpial transections for medically refractory epilepsy: a disaggregated review of patient-level data. Neurosurgery. 2018;82(5):613620.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 73

    Orbach D, Romanelli P, Devinsky O, Doyle W. Late seizure recurrence after multiple subpial transections. Epilepsia. 2001;42(10):13161319.

  • 74

    Vitikainen AM, Salli E, Lioumis P, Mäkelä JP, Metsähonkala L. Applicability of nTMS in locating the motor cortical representation areas in patients with epilepsy. Acta Neurochir (Wien). 2013;155(3):507518.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 75

    Schramm S, Mehta A, Auguste KI, Tarapore PE. Navigated transcranial magnetic stimulation mapping of the motor cortex for preoperative diagnostics in pediatric epilepsy. J Neurosurg Pediatr. 2021;28(3):287294.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1056 1053 193
Full Text Views 169 169 57
PDF Downloads 240 240 91
EPUB Downloads 0 0 0