Development of a miniaturized robotic guidance device for stereotactic neurosurgery

View More View Less
  • 1 Department of Neurosurgery, Medical University Vienna; and
  • | 2 Austrian Center for Medical Innovation and Technology (ACMIT), Wiener Neustadt, Austria
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $45.00
USD  $515.00
USD  $612.00
Print or Print + Online Sign in

OBJECTIVE

Consistently high accuracy and a straightforward use of stereotactic guidance systems are crucial for precise stereotactic targeting and a short procedural duration. Although robotic guidance systems are widely used, currently available systems do not fully meet the requirements for a stereotactic guidance system that combines the advantages of frameless surgery and robotic technology. The authors developed and optimized a small-scale yet highly accurate guidance system that can be seamlessly integrated into an existing operating room (OR) setup due to its design. The aim of this clinical study is to outline the development of this miniature robotic guidance system and present the authors’ clinical experience.

METHODS

After extensive preclinical testing of the robotic stereotactic guidance system, adaptations were implemented for robot fixation, software usability, navigation integration, and end-effector application. Development of the robotic system was then advanced in a clinical series of 150 patients between 2013 and 2019, including 111 needle biopsies, 13 catheter placements, and 26 stereoelectroencephalography (SEEG) electrode placements. During the clinical trial, constant modifications were implemented to meet the setup requirements, technical specifications, and workflow for each indication. For each application, specific setup, workflow, and median procedural accuracy were evaluated.

RESULTS

Application of the miniature robotic system was feasible in 149 of 150 cases. The setup in each procedure was successfully implemented without adding significant OR time. The workflow was seamlessly integrated into the preexisting procedure. In the course of the study, procedural accuracy was improved. For the biopsy procedure, the real target error (RTE) was reduced from a mean of 1.8 ± 1.03 mm to 1.6 ± 0.82 mm at entry (p = 0.05), and from 1.7 ± 1.12 mm to 1.6 ± 0.72 mm at target (p = 0.04). For the SEEG procedures, the RTE was reduced from a mean of 1.43 ± 0.78 mm in the first half of the procedures to 1.12 ± 0.52 mm (p = 0.002) at entry in the second half, and from 1.82 ± 1.13 mm to 1.57 ± 0.98 mm (p = 0.069) at target, respectively. No healing complications or infections were observed in any case.

CONCLUSIONS

The miniature robotic guidance device was able to prove its versatility and seamless integration into preexisting workflow by successful application in 149 stereotactic procedures. According to these data, the robot could significantly improve accuracy without adding time expenditure.

ABBREVIATIONS

CU = control unit; EM = electromagnetic; GIDE = Guide for Implantation of Depth Electrodes; HCU = handheld CU; OR = operating room; PC = personal computer; RPU = robot positioning unit; RTE = real target error; SEEG = stereoelectroencephalography.

Images from Minchev et al. (pp 479–488).

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $515.00
USD  $612.00
  • 1

    Gralla J, Nimsky C, Buchfelder M, Fahlbusch R, Ganslandt O. Frameless stereotactic brain biopsy procedures using the Stealth Station: indications, accuracy and results. Zentralbl Neurochir. 2003;64(4):166170.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Dorward NL, Paleologos TS, Alberti O, Thomas DGT. The advantages of frameless stereotactic biopsy over frame-based biopsy. Br J Neurosurg. 2002;16(2):110118.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Bjartmarz H, Rehncrona S. Comparison of accuracy and precision between frame-based and frameless stereotactic navigation for deep brain stimulation electrode implantation. Stereotact Funct Neurosurg. 2007;85(5):235242.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Golfinos JG, Fitzpatrick BC, Smith LR, Spetzler RF. Clinical use of a frameless stereotactic arm: results of 325 cases. J Neurosurg. 1995;83(2):197205.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Bernays RL, Kollias SS, Khan N, Brandner S, Meier S, Yonekawa Y. Histological yield, complications, and technological considerations in 114 consecutive frameless stereotactic biopsy procedures aided by open intraoperative magnetic resonance imaging. J Neurosurg. 2002;97(2):354362.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 6

    Dhawan S, He Y, Bartek J Jr, Alattar AA, Chen CC. Comparison of frame-based versus frameless intracranial stereotactic biopsy: systematic review and meta-analysis. World Neurosurg. 2019;127:607616.e4.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 7

    Georgiopoulos M, Ellul J, Chroni E, Constantoyannis C. Efficacy, safety, and duration of a frameless fiducial-less brain biopsy versus frame-based stereotactic biopsy: a prospective randomized study. J Neurol Surg A Cent Eur Neurosurg. 2018;79(1):3138.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Woodworth GF, McGirt MJ, Samdani A, Garonzik I, Olivi A, Weingart JD. Frameless image-guided stereotactic brain biopsy procedure: diagnostic yield, surgical morbidity, and comparison with the frame-based technique. J Neurosurg. 2006;104(2):233237.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Air EL, Leach JL, Warnick RE, McPherson CM. Comparing the risks of frameless stereotactic biopsy in eloquent and noneloquent regions of the brain: a retrospective review of 284 cases. J Neurosurg. 2009;111(4):820824.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Smith JS, Quiñones-Hinojosa A, Barbaro NM, McDermott MW. Frame-based stereotactic biopsy remains an important diagnostic tool with distinct advantages over frameless stereotactic biopsy. J Neurooncol. 2005;73(2):173179.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 11

    Spivak CJ, Pirouzmand F. Comparison of the reliability of brain lesion localization when using traditional and stereotactic image-guided techniques: a prospective study. J Neurosurg. 2005;103(3):424427.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Lefranc M, Capel C, Pruvot-Occean AS, Fichten A, Desenclos C, Toussaint P, et al. Frameless robotic stereotactic biopsies: a consecutive series of 100 cases. J Neurosurg. 2015;122(2):342352.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Liu L, Mariani SG, De Schlichting E, Grand S, Lefranc M, Seigneuret E, Chabardès S. Frameless ROSA® robot-assisted lead implantation for deep brain stimulation: technique and accuracy. Oper Neurosurg (Hagerstown). 2020;19(1):5764.

    • Search Google Scholar
    • Export Citation
  • 14

    Lefranc M, Capel C, Pruvot AS, Fichten A, Desenclos C, Toussaint P, et al. The impact of the reference imaging modality, registration method and intraoperative flat-panel computed tomography on the accuracy of the ROSA® stereotactic robot. Stereotact Funct Neurosurg. 2014;92(4):242250.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Lefranc M, Le Gars D. Robotic implantation of deep brain stimulation leads, assisted by intra-operative, flat-panel CT. Acta Neurochir (Wien). 2012;154(11):20692074.

    • Search Google Scholar
    • Export Citation
  • 16

    Lefranc M, Monet P, Desenclos C, Peltier J, Fichten A, Toussaint P, et al. Perfusion MRI as a neurosurgical tool for improved targeting in stereotactic tumor biopsies. Stereotact Funct Neurosurg. 2012;90(4):240247.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 17

    Bekelis K, Radwan TA, Desai A, Roberts DW. Frameless robotically targeted stereotactic brain biopsy: feasibility, diagnostic yield, and safety. J Neurosurg. 2012;116(5):10021006.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Grimm F, Naros G, Gutenberg A, Keric N, Giese A, Gharabaghi A. Blurring the boundaries between frame-based and frameless stereotaxy: feasibility study for brain biopsies performed with the use of a head-mounted robot. J Neurosurg. 2015;123(3):737742.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Li QH, Zamorano L, Pandya A, Perez R, Gong J, Diaz F. The application accuracy of the NeuroMate robot—a quantitative comparison with frameless and frame-based surgical localization systems. Comput Aided Surg. 2002;7(2):9098.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Varma TRK, Eldridge PR, Forster A, Fox S, Fletcher N, Steiger M, et al. Use of the NeuroMate stereotactic robot in a frameless mode for movement disorder surgery. Stereotact Funct Neurosurg. 2003;80(1-4):132135.

    • Search Google Scholar
    • Export Citation
  • 21

    Varma TRK, Eldridge P. Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery. Int J Med Robot. 2006;2(2):107113.

    • Search Google Scholar
    • Export Citation
  • 22

    Minchev G, Kronreif G, Martínez-Moreno M, Dorfer C, Micko A, Mert A, et al. A novel miniature robotic guidance device for stereotactic neurosurgical interventions: preliminary experience with the iSYS1 robot. J Neurosurg. 2017;126(3):985996.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 23

    Minchev G, Kronreif G, Ptacek W, Dorfer C, Micko A, Maschke S, et al. A novel robot-guided minimally invasive technique for brain tumor biopsies. J Neurosurg. 2020;132(1):150158.

    • Search Google Scholar
    • Export Citation
  • 24

    Dorfer C, Stefanits H, Pataraia E, Wolfsberger S, Feucht M, Baumgartner C, Czech T. Frameless stereotactic drilling for placement of depth electrodes in refractory epilepsy: operative technique and initial experience. Neurosurgery. 2014;10 Suppl 4:582591.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Dorfer C, Minchev G, Czech T, Stefanits H, Feucht M, Pataraia E, et al. A novel miniature robotic device for frameless implantation of depth electrodes in refractory epilepsy. J Neurosurg. 2017;126(5):16221628.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Grunert P, Darabi K, Espinosa J, Filippi R. Computer-aided navigation in neurosurgery. Neurosurg Rev. 2003;26(2):73101.

  • 27

    Maurer CR Jr, Maciunas RJ, Fitzpatrick JM. Registration of head CT images to physical space using a weighted combination of points and surfaces. IEEE Trans Med Imaging. 1998;17(5):753761.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Brinker T, Arango G, Kaminsky J, Samii A, Thorns U, Vorkapic P, Samii M. An experimental approach to image guided skull base surgery employing a microscope-based neuronavigation system. Acta Neurochir (Wien). 1998;140(9):883889.

    • Search Google Scholar
    • Export Citation
  • 29

    Maurer CR Jr, Aboutanos GB, Dawant BM, Gadamsetty S, Margolin RA, Maciunas RJ, Fitzpatrick JM. Effect of geometrical distortion correction in MR on image registration accuracy. J Comput Assist Tomogr. 1996;20(4):666679.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Tavares WM, Tustumi F, da Costa Leite C, Gamarra LF, Amaro E Jr, Teixeira MJ, Fonoff ET. An image correction protocol to reduce distortion for 3-T stereotactic MRI. Neurosurgery. 2014;74(1):121127.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Kral F, Puschban EJ, Riechelmann H, Pedross F, Freysinger W. Optical and electromagnetic tracking for navigated surgery of the sinuses and frontal skull base. Rhinology. 2011;49(3):364368.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Dorward NL, Alberti O, Palmer JD, Kitchen ND, Thomas DGT. Accuracy of true frameless stereotaxy: in vivo measurement and laboratory phantom studies. Technical note. J Neurosurg. 1999;90(1):160168.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Paleologos TS, Dorward NL, Wadley JP, Thomas DG. Clinical validation of true frameless stereotactic biopsy: analysis of the first 125 consecutive cases. Neurosurgery. 2001;49(4):830837.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 34

    Widmann G, Stoffner R, Sieb M, Bale R. Target registration and target positioning errors in computer-assisted neurosurgery: proposal for a standardized reporting of error assessment. Int J Med Robot. 2009;5(4):355365.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 35

    Widmann G, Eisner W, Kovacs P, Fiegele T, Ortler M, Lang TB, et al. Accuracy and clinical use of a novel aiming device for frameless stereotactic brain biopsy. Minim Invasive Neurosurg. 2008;51(6):361369.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Goia A, Gilard V, Lefaucheur R, Welter ML, Maltête D, Derrey S. Accuracy of the robot-assisted procedure in deep brain stimulation. Int J Med Robot. 2019;15(6):e2032.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Haegelen C, Touzet G, Reyns N, Maurage CA, Ayachi M, Blond S. Stereotactic robot-guided biopsies of brain stem lesions: experience with 15 cases. Neurochirurgie. 2010;56(5):363367.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Dawes W, Marcus HJ, Tisdall M, Aquilina K. Robot-assisted stereotactic brainstem biopsy in children: prospective cohort study. J Robot Surg. 2019;13(4):575579.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 39

    von Langsdorff D, Paquis P, Fontaine D. In vivo measurement of the frame-based application accuracy of the Neuromate neurosurgical robot. J Neurosurg. 2015;122(1):191194.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Kim LH, Feng AY, Ho AL, Parker JJ, Kumar KK, Chen KS, et al. Robot-assisted versus manual navigated stereoelectroencephalography in adult medically-refractory epilepsy patients. Epilepsy Res. 2020;159:106253.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Carai A, Mastronuzzi A, De Benedictis A, Messina R, Cacchione A, Miele E, et al. Robot-assisted stereotactic biopsy of diffuse intrinsic pontine glioma: a single-center experience. World Neurosurg. 2017;101:584588.

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1344 1340 177
Full Text Views 145 145 51
PDF Downloads 218 218 79
EPUB Downloads 0 0 0