Association of intraoperative end-tidal carbon dioxide level with ablation volume during magnetic resonance–guided laser interstitial thermal therapy for mesial temporal lobe epilepsy

View More View Less
  • 1 Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, Maryland; and
  • | 2 Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $45.00
USD  $515.00
USD  $612.00
Print or Print + Online Sign in

OBJECTIVE

Maximal safe ablation of target structures during magnetic resonance–guided laser interstitial thermal therapy (MRgLiTT) is critical to achieving good seizure outcome in patients with mesial temporal lobe epilepsy (mTLE). The authors sought to determine whether intraoperative physiological variables are associated with ablation volume during MRgLiTT.

METHODS

Patients with mTLE who underwent MRgLiTT at our institution from 2014 to 2019 were retrospectively analyzed. Ablation volume was determined with volumetric analysis of intraoperative postablation MR images. Physiological parameters (systolic blood pressure [SBP], diastolic blood pressure [DBP], mean arterial pressure [MAP], end-tidal carbon dioxide [ETCO2]) measured 40 minutes prior to ablation were analyzed. Univariate and multivariate regression analyses were performed to determine independent predictors of ablation volume.

RESULTS

Forty-four patients met the inclusion criteria. The median (interquartile range) ablation volume was 4.27 (2.92–5.89) cm3, and median ablation energy was 7216 (6402–8784) J. The median MAP, SBP, DBP, and ETCO2 values measured during the 40-minute period leading up to ablation were 72.8 (66.2–81.5) mm Hg, 104.4 (96.4–114.4) mm Hg, 62.4 (54.1–69.8) mm Hg, and 34.1 (32.0–36.2) mm Hg, respectively. In univariate analysis, only total laser energy (r = 0.464, p = 0.003) and 40-minute average ETCO2 (r = −0.388, p = 0.012) were significantly associated with ablation volume. In multivariate analysis, only ETCO2 ≤ 33 mm Hg (p = 0.001) was significantly associated with ablation volume.

CONCLUSIONS

Total ablation energy and ETCO2, but not blood pressure, may significantly affect ablation volume in mTLE patients undergoing MRgLiTT. Mild hypocapnia was associated with increased extent of ablation. Intraoperative monitoring and modulation of ETCO2 may help improve extent of ablation, prediction of ablation volume, and potentially seizure outcome.

ABBREVIATIONS

CBF = cerebral blood flow; CBV = cerebral blood volume; DBP = diastolic blood pressure; ETCO2 = end-tidal carbon dioxide; IQR = interquartile range; MAP = mean arterial pressure; MRgLiTT = magnetic resonance–guided laser interstitial thermal therapy; mTLE = mesial temporal lobe epilepsy; MTS = mesial temporal sclerosis; SBP = systolic blood pressure.

Images from Minchev et al. (pp 479–488).

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $515.00
USD  $612.00
  • 1

    Youngerman BE, Save AV, McKhann GM. Magnetic resonance imaging-guided laser interstitial thermal therapy for epilepsy: systematic review of technique, indications, and outcomes. Neurosurgery. 2020;86(4):E366E382.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 2

    Wu C, Jermakowicz WJ, Chakravorti S, Cajigas I, Sharan AD, Jagid JR, et al. Effects of surgical targeting in laser interstitial thermal therapy for mesial temporal lobe epilepsy: a multicenter study of 234 patients. Epilepsia. 2019;60(6):11711183.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Drane DL, Loring DW, Voets NL, Price M, Ojemann JG, Willie JT, et al. Better object recognition and naming outcome with MRI-guided stereotactic laser amygdalohippocampotomy for temporal lobe epilepsy. Epilepsia. 2015;56(1):101113.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Jermakowicz WJ, Ivan ME, Cajigas I, Ribot R, Jusue-Torres I, Desai MB, et al. Visual deficit from laser interstitial thermal therapy for temporal lobe epilepsy: anatomical considerations. Oper Neurosurg (Hagerstown). 2017;13(5):627633.

    • Search Google Scholar
    • Export Citation
  • 5

    O’Connor KP, Palejwala AH, Milton CK, Lu VM, Glenn CA, Sughrue ME, Conner AK. Laser interstitial thermal therapy case series: choosing the correct number of fibers depending on lesion size. Oper Neurosurg (Hagerstown). 2020;20(1):1823.

    • Search Google Scholar
    • Export Citation
  • 6

    Hoppe C, Witt JA, Helmstaedter C, Gasser T, Vatter H, Elger CE. Laser interstitial thermotherapy (LiTT) in epilepsy surgery. Seizure. 2017;48:4552.

  • 7

    Jermakowicz WJ, Cajigas I, Dan L, Guerra S, Sur S, D’Haese PF, et al. Ablation dynamics during laser interstitial thermal therapy for mesiotemporal epilepsy. PLoS One. 2018;13(7):e0199190.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Yildiz F, Özdemir AT. Prediction of laser-induced thermal damage with artificial neural networks. Laser Phys. 2019;29(7):075205.

  • 9

    Li K, Vakharia VN, Sparks R, França LGS, Granados A, McEvoy AW, et al. Optimizing trajectories for cranial laser interstitial thermal therapy using computer-assisted planning: a machine learning approach. Neurotherapeutics. 2019;16(1):182191.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 10

    Fahrenholtz SJ, Moon TY, Franco M, Medina D, Danish S, Gowda A, et al. A model evaluation study for treatment planning of laser-induced thermal therapy. Int J Hyperthermia. 2015;31(7):705714.

    • Search Google Scholar
    • Export Citation
  • 11

    Salehi A, Kamath AA, Leuthardt EC, Kim AH. Management of intracranial metastatic disease with laser interstitial thermal therapy. Front Oncol. 2018;8:499.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Sun XR, Patel NV, Danish SF. Tissue ablation dynamics during magnetic resonance-guided, laser-induced thermal therapy. Neurosurgery. 2015;77(1):5158.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 13

    Willie JT, Laxpati NG, Drane DL, Gowda A, Appin C, Hao C, et al. Real-time magnetic resonance-guided stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy. Neurosurgery. 2014;74(6):569585.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 14

    Pruitt R, Gamble A, Black K, Schulder M, Mehta AD. Complication avoidance in laser interstitial thermal therapy: lessons learned. J Neurosurg. 2017;126(4):12381245.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 15

    Ritz JP, Lehmann KS, Zurbuchen U, Wacker F, Brehm F, Isbert C, et al. Improving laser-induced thermotherapy of liver metastases—effects of arterial microembolization and complete blood flow occlusion. Eur J Surg Oncol. 2007;33(5):608615.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Andres M, Blauth S, Leithäuser C, Siedow N. Identification of the blood perfusion rate for laser-induced thermotherapy in the liver. J Math Ind. 2020;10(1):17.

    • Search Google Scholar
    • Export Citation
  • 17

    Paul A, Paul A. Computational study of photo-thermal ablation of large blood vessel embedded tumor using localized injection of gold nanoshells. J Therm Biol. 2018;78:329342.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Gelb AW, Craen RA, Rao GSU, Reddy KR, Megyesi J, Mohanty B, et al. Does hyperventilation improve operating condition during supratentorial craniotomy? A multicenter randomized crossover trial. Anesth Analg. 2008;106(2):585594.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 19

    Ho AL, Sussman ES, Pendharkar AV, Le S, Mantovani A, Keebaugh AC, et al. Improved operative efficiency using a real-time MRI-guided stereotactic platform for laser amygdalohippocampotomy. J Neurosurg. 2018;128(4):11651172.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Gross RE, Stern MA, Willie JT, Fasano RE, Saindane AM, Soares BP, et al. Stereotactic laser amygdalohippocampotomy for mesial temporal lobe epilepsy. Ann Neurol. 2018;83(3):575587.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G. User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage. 2006;31(3):11161128.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Wu C, Boorman DW, Gorniak RJ, Farrell CJ, Evans JJ, Sharan AD. The effects of anatomic variations on stereotactic laser amygdalohippocampectomy and a proposed protocol for trajectory planning. Neurosurgery. 2015;11(suppl 2):345357.

    • Search Google Scholar
    • Export Citation
  • 23

    Dale AM, Fischl B, Sereno MI. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage. 1999;9(2):179194.

  • 24

    LaRiviere MJ, Gross RE. Stereotactic laser ablation for medically intractable epilepsy: the next generation of minimally invasive epilepsy surgery. Front Surg. 2016;3:64.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Ito H, Kanno I, Ibaraki M, Hatazawa J, Miura S. Changes in human cerebral blood flow and cerebral blood volume during hypercapnia and hypocapnia measured by positron emission tomography. J Cereb Blood Flow Metab. 2003;23(6):665670.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Zhang Z, Guo Q, Wang E. Hyperventilation in neurological patients: from physiology to outcome evidence. Curr Opin Anaesthesiol. 2019;32(5):568573.

  • 27

    Rusinek H, Brys M, Glodzik L, Switalski R, Tsui WH, Haas F, et al. Hippocampal blood flow in normal aging measured with arterial spin labeling at 3T. Magn Reson Med. 2011;65(1):128137.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 28

    Chassoux F, Artiges E, Semah F, Desarnaud S, Laurent A, Landre E, et al. Determinants of brain metabolism changes in mesial temporal lobe epilepsy. Epilepsia. 2016;57(6):907919.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 29

    Koutroumanidis M, Binnie CD, Elwes RDC, Polkey CE, Seed P, Alarcon G, et al. Interictal regional slow activity in temporal lobe epilepsy correlates with lateral temporal hypometabolism as imaged with 18FDG PET: neurophysiological and metabolic implications. J Neurol Neurosurg Psychiatry. 1998;65(2):170176.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Henry TR, Mazziotta JC, Engel J Jr. Interictal metabolic anatomy of mesial temporal lobe epilepsy. Arch Neurol. 1993;50(6):582589.

  • 31

    Wolf RL, Alsop DC, Levy-Reis I, Meyer PT, Maldjian JA, Gonzalez-Atavales J, et al. Detection of mesial temporal lobe hypoperfusion in patients with temporal lobe epilepsy by use of arterial spin labeled perfusion MR imaging. AJNR Am J Neuroradiol. 2001;22(7):13341341.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 32

    Camacho DLA, Castillo M. MR imaging of temporal lobe epilepsy. Semin Ultrasound CT MR. 2007;28(6):424436.

  • 33

    Whelan CD, Altmann A, Botía JA, Jahanshad N, Hibar DP, Absil J, et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain. 2018;141(2):391408.

    • Search Google Scholar
    • Export Citation
  • 34

    Raichle ME, Plum F. Hyperventilation and cerebral blood flow. Stroke. 1972;3(5):566575.

  • 35

    Jermakowicz WJ, Kanner AM, Sur S, Bermudez C, D’Haese PF, Kolcun JPG, et al. Laser thermal ablation for mesiotemporal epilepsy: analysis of ablation volumes and trajectories. Epilepsia. 2017;58(5):801810.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Kerezoudis P, Parisi V, Marsh WR, Kaufman TJ, Lehman VT, Worrell GA, et al. Surgical outcomes of laser interstitial thermal therapy for temporal lobe epilepsy: systematic review and meta-analysis. World Neurosurg. 2020;143:527536.e3.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 37

    Kang JY, Wu C, Tracy J, Lorenzo M, Evans J, Nei M, et al. Laser interstitial thermal therapy for medically intractable mesial temporal lobe epilepsy. Epilepsia. 2016;57(2):325334.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 38

    Grewal SS, Zimmerman RS, Worrell G, Brinkmann BH, Tatum WO, Crepeau AZ, et al. Laser ablation for mesial temporal epilepsy: a multi-site, single institutional series. J Neurosurg. 2018;130(6):20552062.

    • Search Google Scholar
    • Export Citation
  • 39

    Voets NL, Alvarez I, Qiu D, Leatherday C, Willie JT, Sotiropoulos S, et al. Mechanisms and risk factors contributing to visual field deficits following stereotactic laser amygdalohippocampotomy. Stereotact Funct Neurosurg. 2019;97(4):255265.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 40

    Alexander H, Cobourn K, Fayed I, Depositario-Cabacar D, Keating RF, Gaillard WD, Oluigbo CO. Magnetic resonance-guided laser interstitial thermal therapy for the treatment of non-lesional insular epilepsy in pediatric patients: thermal dynamic and volumetric factors influencing seizure outcomes. Childs Nerv Syst. 2019;35(3):453461.

    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 1786 1783 313
Full Text Views 128 128 30
PDF Downloads 150 150 45
EPUB Downloads 0 0 0