Predictors for time to awake in patients undergoing awake craniotomies

View More View Less
  • 1 Departments of Anesthesiology and
  • | 2 Neurosurgery, Amsterdam University Medical Centers, VU University Medical Center, Amsterdam; and
  • | 3 Neurosurgical Center Amsterdam, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, The Netherlands
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $45.00
USD  $515.00
USD  $612.00
Print or Print + Online Sign in

OBJECTIVE

Awake craniotomies are often characterized by alternating asleep-awake-asleep periods. Preceding the awake phase, patients are weaned from anesthesia and mechanical ventilation. Although clinicians aim to minimize the time to awake for patient safety and operating room efficiency, in some patients, the time to awake exceeds 20 minutes. The goal of this study was to determine the average time to awake and the factors associated with prolonged time to awake (> 20 minutes) in patients undergoing awake craniotomy.

METHODS

Records of patients who underwent awake craniotomy between 2003 and 2020 were evaluated. Time to awake was defined as the time between discontinuation of propofol and remifentanil infusion and the time of extubation. Patient and perioperative characteristics were explored as predictors for time to awake using logistic regression analyses.

RESULTS

Data of 307 patients were analyzed. The median (IQR) time to awake was 13 (10–20) minutes and exceeded 20 minutes in 17% (95% CI 13%–21%) of the patients. In both univariate and multivariable analyses, increased age, nonsmoker status, and American Society of Anesthesiologists (ASA) class III versus II were associated with a time to awake exceeding 20 minutes. BMI, as well as the use of alcohol, drugs, dexamethasone, or antiepileptic agents, was not significantly associated with the time to awake.

CONCLUSIONS

While most patients undergoing awake craniotomy are awake within a reasonable time frame after discontinuation of propofol and remifentanil infusion, time to awake exceeded 20 minutes in 17% of the patients. Increasing age, nonsmoker status, and higher ASA classification were found to be associated with a prolonged time to awake.

ABBREVIATIONS

ASA = American Society of Anesthesiologists.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
USD  $515.00
USD  $612.00
  • 1

    Dinsmore J. Anaesthesia for elective neurosurgery. Br J Anaesth. 2007;99(1):6874.

  • 2

    De Witt Hamer PC, Robles SG, Zwinderman AH, Duffau H, Berger MS. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol. 2012;30(20):25592565.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 3

    Szelényi A, Bello L, Duffau H, Fava E, Feigl GC, Galanda M, et al. Intraoperative electrical stimulation in awake craniotomy: methodological aspects of current practice. Neurosurg Focus. 2010;28(2):E7.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 4

    Taylor MD, Bernstein M. Awake craniotomy with brain mapping as the routine surgical approach to treating patients with supratentorial intraaxial tumors: a prospective trial of 200 cases. J Neurosurg. 1999;90(1):3541.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 5

    Serletis D, Bernstein M. Prospective study of awake craniotomy used routinely and nonselectively for supratentorial tumors. J Neurosurg. 2007;107(1):16.

  • 6

    Brown T, Shah AH, Bregy A, Shah NH, Thambuswamy M, Barbarite E, et al. Awake craniotomy for brain tumor resection: the rule rather than the exception?. J Neurosurg Anesthesiol. 2013;25(3):240247.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7

    Chacko AG, Thomas SG, Babu KS, Daniel RT, Chacko G, Prabhu K, et al. Awake craniotomy and electrophysiological mapping for eloquent area tumours. Clin Neurol Neurosurg. 2013;115(3):329334.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 8

    Stevanovic A, Rossaint R, Veldeman M, Bilotta F, Coburn M. Anaesthesia management for awake craniotomy: systematic review and meta-analysis. PLoS One. 2016;11(5):e0156448.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 9

    Hansen E, Seemann M, Zech N, Doenitz C, Luerding R, Brawanski A. Awake craniotomies without any sedation: the awake-awake-awake technique. Acta Neurochir (Wien). 2013;155(8):14171424.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10

    Duffau H. The usefulness of the asleep-awake-asleep glioma surgery. Acta Neurochir (Wien). 2014;156(8):14931494.

  • 11

    Deras P, Moulinié G, Maldonado IL, Moritz-Gasser S, Duffau H, Bertram L. Intermittent general anesthesia with controlled ventilation for asleep-awake-asleep brain surgery: a prospective series of 140 gliomas in eloquent areas. Neurosurgery. 2012;71(4):764771.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 12

    Duffau H. The reliability of asleep-awake-asleep protocol for intraoperative functional mapping and cognitive monitoring in glioma surgery. Acta Neurochir (Wien). 2013;155(10):18031804.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13

    Potters JW, Klimek M. Awake craniotomy: improving the patient’s experience. Curr Opin Anaesthesiol. 2015;28(5):511516.

  • 14

    Beez T, Boge K, Wager M, Whittle I, Fontaine D, Spena G, et al. Tolerance of awake surgery for glioma: a prospective European Low Grade Glioma Network multicenter study. Acta Neurochir (Wien). 2013;155(7):13011308.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15

    Gravesteijn BY, Keizer ME, Vincent AJPE, Schouten JW, Stolker RJ, Klimek M. Awake craniotomy versus craniotomy under general anesthesia for the surgical treatment of insular glioma: choices and outcomes. Neurol Res. 2018;40(2):8796.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 16

    Lobo FA, Wagemakers M, Absalom AR. Anaesthesia for awake craniotomy. Br J Anaesth. 2016;116(6):740744.

  • 17

    Shen SL, Zheng JY, Zhang J, Wang WY, Jin T, Zhu J, Zhang Q. Comparison of dexmedetomidine and propofol for conscious sedation in awake craniotomy: a prospective, double-blind, randomized, and controlled clinical trial. Ann Pharmacother. 2013;47(11):13911399.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 18

    Skucas AP, Artru AA. Anesthetic complications of awake craniotomies for epilepsy surgery. Anesth Analg. 2006;102(3):882887.

  • 19

    Manninen PH, Balki M, Lukitto K, Bernstein M. Patient satisfaction with awake craniotomy for tumor surgery: a comparison of remifentanil and fentanyl in conjunction with propofol. Anesth Analg. 2006;102(1):237242.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 20

    Eseonu CI, Rincon-Torroella J, ReFaey K, Quiñones-Hinojosa A. The cost of brain surgery: awake vs asleep craniotomy for perirolandic region tumors. Neurosurgery. 2017;81(2):307314.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 21

    Isensee F, Jaeger PF, Kohl SAA, Petersen J, Maier-Hein KH. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat Methods. 2021;18(2):203211.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 22

    Rios Velazquez E, Meier R, Dunn WD Jr, Alexander B, Wiest R, Bauer S, et al. Fully automatic GBM segmentation in the TCGA-GBM dataset: prognosis and correlation with VASARI features. Sci Rep. 2015;5:16822.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23

    Eijgelaar R, De Witt Hamer PC, Peeters CFW, Barkhof F, van Herk M, Witte MG. Voxelwise statistical methods to localize practice variation in brain tumor surgery. PLoS One. 2019;14(9):e0222939.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 24

    Müller DMJ, Robe PA, Ardon H, Barkhof F, Bello L, Berger MS, et al. Quantifying eloquent locations for glioblastoma surgery using resection probability maps. J Neurosurg. 2020;134(3):10911101.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 25

    Müller DMJ, Robe PAJT, Eijgelaar RS, Witte MG, Visser M, de Munck JC, et al. Comparing glioblastoma surgery decisions between teams using brain maps of tumor locations, biopsies, and resections. JCO Clin Cancer Inform. 2019;3:112.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 26

    Eijgelaar RS, Visser M, Müller DMJ, Barkhof F, Vrenken H, van Herk M, et al. Robust deep learning-based segmentation of glioblastoma on routine clinical MRI scans using sparsified training. Radiol Artif Intell. 2020;2(5):e190103.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 27

    Vetter TR, Schober P. Regression: The apple does not fall far from the tree. Anesth Analg. 2018;127(1):277283.

  • 28

    Schober P, Vetter TR. Confounding in observational research. Anesth Analg. 2020;130(3):635.

  • 29

    Itoi C, Hiromitsu K, Saito S, Yamada R, Shinoura N, Midorikawa A. Predicting sleepiness during an awake craniotomy. Clin Neurol Neurosurg. 2015;139:307310.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 30

    Maeda S, Tomoyasu Y, Higuchi H, Ishii-Maruhama M, Egusa M, Miyawaki T. Independent predictors of delay in emergence from general anesthesia. Anesth Prog. 2015;62(1):813.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 31

    Tzabazis A, Miller C, Dobrow MF, Zheng K, Brock-Utne JG. Delayed emergence after anesthesia. J Clin Anesth. 2015;27(4):353360.

  • 32

    Schubert A, Mascha EJ, Bloomfield EL, DeBoer GE, Gupta MK, Ebrahim ZY. Effect of cranial surgery and brain tumor size on emergence from anesthesia. Anesthesiology. 1996;85(3):513521.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 33

    Misal US, Joshi SA, Shaikh MM. Delayed recovery from anesthesia: a postgraduate educational review. Anesth Essays Res. 2016;10(2):164172.

  • 34

    Paldor I, Drummond KJ, Awad M, Sufaro YZ, Kaye AH. Is a wake-up call in order? Review of the evidence for awake craniotomy. J Clin Neurosci. 2016;23:17.

  • 35

    Olsen KS. The asleep-awake technique using propofol-remifentanil anaesthesia for awake craniotomy for cerebral tumours. Eur J Anaesthesiol. 2008;25(8):662669.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 36

    Hagan KB, Bhavsar S, Raza SM, Arnold B, Arunkumar R, Dang A, et al. Enhanced recovery after surgery for oncological craniotomies. J Clin Neurosci. 2016;24:1016.

  • 37

    Natalini D, Ganau M, Rosenkranz R, Petrinic T, Fitzgibbon K, Antonelli M, et al. Comparison of the asleep-awake-asleep technique and monitored anesthesia care during awake craniotomy: a systematic review and meta-analysis. J Neurosurg Anesthesiol. Published online 16, 2020.doi:10.1097/ANA.0000000000000675

    • Search Google Scholar
    • Export Citation
  • 38

    Miller LG. Recent developments in the study of the effects of cigarette smoking on clinical pharmacokinetics and clinical pharmacodynamics. Clin Pharmacokinet. 1989;17(2):90108.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39

    Seoane-Collazo P, Diéguez C, Nogueiras R, Rahmouni K, Fernández-Real JM, López M. Nicotine’ actions on energy balance: friend or foe?. Pharmacol Ther. 2021;219:107693.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40

    Blauw LL, Boon MR, Rosendaal FR, de Mutsert R, Gast KB, van Dijk KW, et al. Smoking is associated with increased resting energy expenditure in the general population: the NEO study. Metabolism. 2015;64(11):15481555.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 41

    Apfelbaum JL, Grasela TH, Hug CC Jr, McLeskey CH, Nahrwold ML, Roizen MF, et al. The initial clinical experience of 1819 physicians in maintaining anesthesia with propofol: characteristics associated with prolonged time to awakening. Anesth Analg. 1993;77(4 suppl):S10S14.

    • PubMed
    • Search Google Scholar
    • Export Citation
  • 42

    Schober P, Bossers SM, Schwarte LA. Statistical significance versus clinical importance of observed effect sizes: what do P values and confidence intervals really represent?. Anesth Analg. 2018;126(3):10681072.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43

    Abramowitz MK, Hall CB, Amodu A, Sharma D, Androga L, Hawkins M. Muscle mass, BMI, and mortality among adults in the United States: a population-based cohort study. PLoS One. 2018;13(4):e0194697.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 44

    Hilmi M, Jouinot A, Burns R, Pigneur F, Mounier R, Gondin J, et al. Body composition and sarcopenia: the next-generation of personalized oncology and pharmacology?. Pharmacol Ther. 2019;196:135159.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation
  • 45

    Mintziras I, Miligkos M, Wächter S, Manoharan J, Maurer E, Bartsch DK. Sarcopenia and sarcopenic obesity are significantly associated with poorer overall survival in patients with pancreatic cancer: systematic review and meta-analysis. Int J Surg. 2018;59:1926.

    • Crossref
    • PubMed
    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 799 799 244
Full Text Views 177 177 82
PDF Downloads 250 250 132
EPUB Downloads 0 0 0