Novel intraoperative online functional mapping of somatosensory finger representations for targeted stimulating electrode placement: technical note

View More View Less
  • 1 National Institute of Mental Health, National Institutes of Health, Bethesda;
  • | 2 Departments of Biomedical Engineering,
  • | 3 Physical Medicine and Rehabilitation,
  • | 4 Neurology,
  • | 5 Anesthesiology and Critical Care Medicine,
  • | 6 Neurosurgery, and
  • | 7 Plastic and Reconstructive Surgery, Johns Hopkins University, Baltimore;
  • | 8 Research and Exploratory Development Department, Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland;
  • | 9 UMC Utrecht Brain Center, Utrecht, The Netherlands; and
  • | 10 Department of Organismal Biology and Anatomy, University of Chicago, Illinois
Restricted access

Purchase Now

USD  $45.00

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
Print or Print + Online

Defining eloquent cortex intraoperatively, traditionally performed by neurosurgeons to preserve patient function, can now help target electrode implantation for restoring function. Brain-machine interfaces (BMIs) have the potential to restore upper-limb motor control to paralyzed patients but require accurate placement of recording and stimulating electrodes to enable functional control of a prosthetic limb. Beyond motor decoding from recording arrays, precise placement of stimulating electrodes in cortical areas associated with finger and fingertip sensations allows for the delivery of sensory feedback that could improve dexterous control of prosthetic hands. In this study, the authors demonstrated the use of a novel intraoperative online functional mapping (OFM) technique with high-density electrocorticography to localize finger representations in human primary somatosensory cortex. In conjunction with traditional pre- and intraoperative targeting approaches, this technique enabled accurate implantation of stimulating microelectrodes, which was confirmed by postimplantation intracortical stimulation of finger and fingertip sensations. This work demonstrates the utility of intraoperative OFM and will inform future studies of closed-loop BMIs in humans.

ABBREVIATIONS

BMI = brain-machine interface; ECoG = electrocorticography; ECS = electrical cortical stimulation; fMRI = functional MRI; hd-ECoG = high-density ECoG; IONM = intraoperative neurophysiological monitoring; MEA = microelectrode array; OFM = online functional mapping; ROI = region of interest; SCI = spinal cord injury; SSEP = somatosensory evoked potential.

Illustration from Fan et al. (pp 1298–1309). Copyright Jun Fan. Published with permission.

JNS + Pediatrics - 1 year subscription bundle (Individuals Only)

USD  $515.00

JNS + Pediatrics + Spine - 1 year subscription bundle (Individuals Only)

USD  $612.00
  • 1

    De Witt Hamer PC, Robles SG, Zwinderman AH, et al. Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol. 2012;30(20):25592565.

    • Search Google Scholar
    • Export Citation
  • 2

    Ojemann GA. Individual variability in cortical localization of language. J Neurosurg. 1979;50(2):164169.

  • 3

    Penfield W, Boldrey E. Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain. 1937;60(4):389443.

    • Search Google Scholar
    • Export Citation
  • 4

    Roux FE, Djidjeli I, Durand JB. Functional architecture of the somatosensory homunculus detected by electrostimulation. J Physiol. 2018;596(5):941956.

    • Search Google Scholar
    • Export Citation
  • 5

    Scerrati A, Mongardi L, Cavallo MA, et al. Awake surgery for skills preservation during a sensory area tumor resection in a clarinet player. Acta Neurol Belg. Published online May 5, 2020. doi:10.1007/s13760-020-01368-5

    • Search Google Scholar
    • Export Citation
  • 6

    Aflalo T, Kellis S, Klaes C, et al. Neurophysiology. Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science. 2015;348(6237):906910.

    • Search Google Scholar
    • Export Citation
  • 7

    Benabid AL, Costecalde T, Eliseyev A, et al. An exoskeleton controlled by an epidural wireless brain-machine interface in a tetraplegic patient: a proof-of-concept demonstration. Lancet Neurol. 2019;18(12):11121122.

    • Search Google Scholar
    • Export Citation
  • 8

    Bouton CE, Shaikhouni A, Annetta NV, et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature. 2016;533(7602):247250.

    • Search Google Scholar
    • Export Citation
  • 9

    Collinger JL, Wodlinger B, Downey JE, et al. High-performance neuroprosthetic control by an individual with tetraplegia. Lancet. 2013;381(9866):557564.

    • Search Google Scholar
    • Export Citation
  • 10

    Gilja V, Pandarinath C, Blabe CH, et al. Clinical translation of a high-performance neural prosthesis. Nat Med. 2015;21(10):11421145.

  • 11

    Hochberg LR, Serruya MD, Friehs GM, et al. Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature. 2006;442(7099):164171.

    • Search Google Scholar
    • Export Citation
  • 12

    Johansson RS, Flanagan JR. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat Rev Neurosci. 2009;10(5):345359.

    • Search Google Scholar
    • Export Citation
  • 13

    Flesher SN, Downey JE, Weiss JM, et al. Restored tactile sensation improves neuroprosthetic arm control. bioRxiv. Preprint posted online May 31, 2019. doi:10.1101/653428

    • Search Google Scholar
    • Export Citation
  • 14

    Armenta Salas M, Bashford L, Kellis S, et al. Proprioceptive and cutaneous sensations in humans elicited by intracortical microstimulation. eLife. 2018;7:e32904.

    • Search Google Scholar
    • Export Citation
  • 15

    Flesher SN, Collinger JL, Foldes ST, et al. Intracortical microstimulation of human somatosensory cortex. Sci Transl Med. 2016;8(361):361ra141.

    • Search Google Scholar
    • Export Citation
  • 16

    O’Doherty JE, Lebedev MA, Ifft PJ, et al. Active tactile exploration using a brain-machine-brain interface. Nature. 2011;479(7372):228231.

    • Search Google Scholar
    • Export Citation
  • 17

    Brunner P, Ritaccio AL, Lynch TM, et al. A practical procedure for real-time functional mapping of eloquent cortex using electrocorticographic signals in humans. Epilepsy Behav. 2009;15(3):278286.

    • Search Google Scholar
    • Export Citation
  • 18

    Milsap G, Collard M, Coogan C, Crone NE. BCI2000Web and WebFM: browser-based tools for brain computer interfaces and functional brain mapping. Front Neurosci. 2019;12:1030.

    • Search Google Scholar
    • Export Citation
  • 19

    Wahnoun R, Benson M, Helms-Tillery S, Adelson PD. Delineation of somatosensory finger areas using vibrotactile stimulation, an ECoG study. Brain Behav. 2015;5(10):e00369.

    • Search Google Scholar
    • Export Citation
  • 20

    Wang Y, Fifer MS, Flinker A, et al. Spatial-temporal functional mapping of language at the bedside with electrocorticography. Neurology. 2016;86(13):11811189.

    • Search Google Scholar
    • Export Citation
  • 21

    Ogawa H, Kamada K, Kapeller C, et al. Rapid and minimum invasive functional brain mapping by real-time visualization of high gamma activity during awake craniotomy. World Neurosurg. 2014;82(5):912.

    • Search Google Scholar
    • Export Citation
  • 22

    Taplin AM, de Pesters A, Brunner P, et al. Intraoperative mapping of expressive language cortex using passive real-time electrocorticography. Epilepsy Behav Case Rep. 2016;5:4651.

    • Search Google Scholar
    • Export Citation
  • 23

    Hotson G, McMullen DP, Fifer MS, et al. Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject. J Neural Eng. 2016;13(2):02601726017.

    • Search Google Scholar
    • Export Citation
  • 24

    Prueckl R, Kapeller C, Kamada K, et al. Distinction of individual finger responses in somatosensory cortex using ECoG high-gamma activation mapping. Annu Int Conf IEEE Eng Med Biol Soc. 2015;2015:57605763.

    • Search Google Scholar
    • Export Citation
  • 25

    Fifer MS, McMullen DP, Thomas TM, et al. Intracortical microstimulation elicits human fingertip sensations. medRxiv. Preprint posted online June 8, 2020. doi: 10.1101/2020.05.29.20117374

    • Search Google Scholar
    • Export Citation
  • 26

    Kolasinski J, Makin TR, Jbabdi S, et al. Investigating the stability of fine-grain digit somatotopy in individual human participants. J Neurosci. 2016;36(4):11131127.

    • Search Google Scholar
    • Export Citation
  • 27

    Kurth R, Villringer K, Curio G, et al. fMRI shows multiple somatotopic digit representations in human primary somatosensory cortex. Neuroreport. 2000;11(7):14871491.

    • Search Google Scholar
    • Export Citation
  • 28

    Holmes NP, Tamè L, Beeching P, et al. Locating primary somatosensory cortex in human brain stimulation studies: experimental evidence. J Neurophysiol. 2019;121(1):336344.

    • Search Google Scholar
    • Export Citation
  • 29

    Kaas JH, Nelson RJ, Sur M, et al. Multiple representations of the body within the primary somatosensory cortex of primates. Science. 1979;204(4392):521523.

    • Search Google Scholar
    • Export Citation
  • 30

    Sanchez-Panchuelo RM, Besle J, Beckett A, et al. Within-digit functional parcellation of Brodmann areas of the human primary somatosensory cortex using functional magnetic resonance imaging at 7 tesla. J Neurosci. 2012;32(45):1581515822.

    • Search Google Scholar
    • Export Citation
  • 31

    Awad A, Levi R, Lindgren L, et al. Preserved somatosensory conduction in a patient with complete cervical spinal cord injury. J Rehabil Med. 2015;47(5):426431.

    • Search Google Scholar
    • Export Citation
  • 32

    Ganzer PD, Colachis SC IV, Schwemmer MA, et al. Restoring the sense of touch using a sensorimotor demultiplexing neural interface. Cell. 2020;181(4):763773.

    • Search Google Scholar
    • Export Citation
  • 33

    Wrigley PJ, Siddall PJ, Gustin SM. New evidence for preserved somatosensory pathways in complete spinal cord injury: a fMRI study. Hum Brain Mapp. 2018;39(1):588598.

    • Search Google Scholar
    • Export Citation
  • 34

    Kikkert S, Kolasinski J, Jbabdi S, et al. Revealing the neural fingerprints of a missing hand. eLife. 2016;5:e15292.

  • 35

    Spena G, Nava A, Cassini F, et al. Preoperative and intraoperative brain mapping for the resection of eloquent-area tumors. A prospective analysis of methodology, correlation, and usefulness based on clinical outcomes. Acta Neurochir (Wien). 2010;152(11):18351846.

    • Search Google Scholar
    • Export Citation
  • 36

    Lee W, Chung YA, Jung Y, et al. Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound. BMC Neurosci. 2016;17(1):68.

    • Search Google Scholar
    • Export Citation
  • 37

    Cohen LG, Bandinelli S, Findley TW, Hallett M. Motor reorganization after upper limb amputation in man. A study with focal magnetic stimulation. Brain. 1991;114(Pt 1B):615627.

    • Search Google Scholar
    • Export Citation
  • 38

    Borchers S, Himmelbach M, Logothetis N, Karnath H-O. Direct electrical stimulation of human cortex—the gold standard for mapping brain functions?. Nat Rev Neurosci. 2011;13(1):6370.

    • Search Google Scholar
    • Export Citation
  • 39

    Pallud J, Mandonnet E, Corns R, et al. Technical principles of direct bipolar electrostimulation for cortical and subcortical mapping in awake craniotomy. Neurochirurgie. 2017;63(3):158163.

    • Search Google Scholar
    • Export Citation
  • 40

    Hiremath SV, Tyler-Kabara EC, Wheeler JJ, et al. Human perception of electrical stimulation on the surface of somatosensory cortex. PLoS One. 2017;12(5):e0176020.

    • Search Google Scholar
    • Export Citation
  • 41

    Lee B, Kramer D, Armenta Salas M, et al. Engineering artificial somatosensation through cortical stimulation in humans. Front Syst Neurosci. 2018;12:24.

    • Search Google Scholar
    • Export Citation
  • 42

    Kramer DR, Kellis S, Barbaro M, et al. Technical considerations for generating somatosensation via cortical stimulation in a closed-loop sensory/motor brain-computer interface system in humans. J Clin Neurosci. 2019;63:116121.

    • Search Google Scholar
    • Export Citation
  • 43

    Kramer DR, Lee MB, Barbaro M, et al. Mapping of primary somatosensory cortex of the hand area using a high-density electrocorticography grid for closed-loop brain computer interface. J Neural Eng. 2021;18(3):036009.

    • Search Google Scholar
    • Export Citation
  • 44

    Muller L, Rolston JD, Fox NP, et al. Direct electrical stimulation of human cortex evokes high gamma activity that predicts conscious somatosensory perception. J Neural Eng. 2018;15(2):026015.

    • Search Google Scholar
    • Export Citation
  • 45

    Breshears JD, Roland JL, Sharma M, et al. Stable and dynamic cortical electrophysiology of induction and emergence with propofol anesthesia. Proc Natl Acad Sci U S A. 2010;107(49):2117021175.

    • Search Google Scholar
    • Export Citation

Metrics

All Time Past Year Past 30 Days
Abstract Views 115 115 97
Full Text Views 29 29 19
PDF Downloads 48 48 31
EPUB Downloads 0 0 0